تاثیر غلظت های مختلف نیتروژن محلول غذایی و دمای ریشه بر شاخص های تنشی در دو گیاه کاهو و فلفل دلمه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد علوم باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 استادیار گروه باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

در این پژوهش واکنش دو گیاه کاهو به عنوان یک سبزی برگی با سیستم ریشه‌ای سطحی و فلفل دلمه‌ای به عنوان یک سبزی میوه‌ای و سیستم ریشه‌ای عمیق نسبت به دمای بالا در ناحیه ریشه در غلظت‌های مختلف نیتروژن محلول غذایی بررسی گردیده است. تیمارهای غذایی شامل 1/101، 8/75 و 5/50 میلی مولار نیتروژن محلول غذایی جانسون و دو دمای ریشه 25 و 35 درجه سانتی‌گراد بود. نتایج نشان داد که در شرایط تنش هرچه میزان شاخص مقاومت به تنش کاهش پیدا کند، میزان مقاومت گیاه به تنش افزایش می‌یابد. همچنین هرچه میزان شاخص‌های تحمل به تنش STI، میانگین عملکرد MP، شاخص میزان مقاومت TOL و شاخص پایداری عملکرد YSI بالاتر باشد، گیاه تحمل بهتری به شرایط تنش دارد. کاهو نسبت به دمای ریشه و فلفل دلمه‌ای نسبت به تغییرات غلظت نیتروژن محلول غذایی مقاومت بیش‌تری نشان دادند.  

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Different Concentrations of Nutrient Solution Nitrogen and Root Temperature on Stress Indices in Lettuce and Bell Pepper

نویسندگان [English]

  • Atena Sheibani-Rad 1
  • Maryam Haghighi 2
1 M.Sc. Student, Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
2 Assistant Professor, Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
چکیده [English]

In this study, the reaction of two lettuce plants as a leafy vegetable with superficial root system and bell pepper as a fruit vegetable and deep root system to high temperature in the root area at different concentrations of nutrient solution nitrogen was investigated. Nutritional treatments included 101.1, 75.8 and 50.5 mM Johnson nutrient solution and two root temperatures of 25 and 35 ° C. The results showed that in stress conditions, as the stress resistance index decreases, the plant resistance to stress increases. Also, the higher the STI stress tolerance index, mean MP yield, TOL resistance index and YSI yield stability index, the better the plant tolerates stress conditions. Lettuce was more resistant to root temperature and bell pepper to changes in nitrogen concentration of nutrient solution.

کلیدواژه‌ها [English]

  • High temperature root
  • Stress resistance index
  • Nitrogen deficiency
  • Bouslama, M. & Schapaugh Jr, W. T. (1984). Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop science, 24(5), 933-937.‏
  • Bunn, R., Lekberg, Y. & Zabinski, C. (2009). Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology, 90(5), 1378-1388.‏
  • Farshadfar, E., Farshadfar, M. & Dabiri, S. (2012). Comparison between effective selection criteria of drought tolerance in bread wheat landraces of Iran. Annals of Biological Research, 3(7), 3381-3389.‏
  • Farshadfar, E. & Sutka, J. (2003). Multivariate analysis of drought tolerance in wheat substitution lines. Cereal Research Communications, 31(1), 33-40.‏
  • Fernandez, G. C. (1992). Effective selection criteria for assessing plant stress tolerance. In Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13-16, Shanhua, Taiwan, 1992 (pp. 257-270).‏
  • Fischer, R. A. & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897-912.‏
  • Fischer, R. A., Rees, D., Sayre, K. D., Lu, Z. M., Condon, A. G. & Saavedra, A. L. (1998). Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Science, 38(6), 1467-1475.‏
  • Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R. G., Ricciardi, G. L. & Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4), 523-531.‏
  • Guo, P. & Al-Khatib, K. (2003). Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis). Weed Science, 51(6), 869-875.‏
  • Hall, A. E. (1993). Is dehydration tolerance relevant to genotypic difference in leaf senescence and crop adaption to dry environments?. Current topics in plant physiology (USA).‏
  • Lan, J. (1998). Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Boreali-occidentalis Sinica, 7, 85-87.‏
  • Lawlor, D. W. (2002). Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Journal of experimental Botany, 53(370), 773-787.‏
  • Mousavi, S. S., YAZDI, S. B., Naghavi, M. R., Zali, A. A., Dashti, H., & Pourshahbazi, A. (2008). Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes.‏ Desert, 12, 165-178.
  • Nada, K., He, L. X. & Tachibana, S. (2003). Impaired photosynthesis in cucumber (Cucumis sativus L.) by high root-zone temperature involves ABA-induced stomatal closure and reduction in ribulose-1, 5-bisphosphate carboxylase/oxygenase activity. Journal of the Japanese Society for Horticultural Science, 72(6), 504-510.‏
  • Rochiman, K. & Purnobasuki, H. (2013). Effect of nitrogen supply and genotypic variation for nitrogen use efficiency in maize. Journal of Experimental Agriculture International, 182-199.‏
  • Rosielle, A. A. & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non‐stress environment 1. Crop Science, 21(6), 943-946.‏
  • Wu, Q. S., & Zou, Y. N. (2010). Beneficial roles of arbuscular mycorrhizas in citrus seedlings at tem
  • Bouslama, M. & Schapaugh Jr, W. T. (1984). Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance 1. Crop science, 24(5), 933-937.‏
  • Bunn, R., Lekberg, Y. & Zabinski, C. (2009). Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology, 90(5), 1378-1388.‏
  • Farshadfar, E., Farshadfar, M. & Dabiri, S. (2012). Comparison between effective selection criteria of drought tolerance in bread wheat landraces of Iran. Annals of Biological Research, 3(7), 3381-3389.‏
  • Farshadfar, E. & Sutka, J. (2003). Multivariate analysis of drought tolerance in wheat substitution lines. Cereal Research Communications, 31(1), 33-40.‏
  • Fernandez, G. C. (1992). Effective selection criteria for assessing plant stress tolerance. In Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Aug. 13-16, Shanhua, Taiwan, 1992 (pp. 257-270).‏
  • Fischer, R. A. & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897-912.‏
  • Fischer, R. A., Rees, D., Sayre, K. D., Lu, Z. M., Condon, A. G. & Saavedra, A. L. (1998). Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop Science, 38(6), 1467-1475.‏
  • Gavuzzi, P., Rizza, F., Palumbo, M., Campanile, R. G., Ricciardi, G. L. & Borghi, B. (1997). Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Canadian Journal of Plant Science, 77(4), 523-531.‏
  • Guo, P. & Al-Khatib, K. (2003). Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis). Weed Science, 51(6), 869-875.‏
  • Hall, A. E. (1993). Is dehydration tolerance relevant to genotypic difference in leaf senescence and crop adaption to dry environments?. Current topics in plant physiology (USA).‏
  • Lan, J. (1998). Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Boreali-occidentalis Sinica, 7, 85-87.‏
  • Lawlor, D. W. (2002). Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. Journal of experimental Botany, 53(370), 773-787.‏
  • Mousavi, S. S., YAZDI, S. B., Naghavi, M. R., Zali, A. A., Dashti, H., & Pourshahbazi, A. (2008). Introduction of new indices to identify relative drought tolerance and resistance in wheat genotypes.‏ Desert, 12, 165-178.
  • Nada, K., He, L. X. & Tachibana, S. (2003). Impaired photosynthesis in cucumber (Cucumis sativus L.) by high root-zone temperature involves ABA-induced stomatal closure and reduction in ribulose-1, 5-bisphosphate carboxylase/oxygenase activity. Journal of the Japanese Society for Horticultural Science, 72(6), 504-510.‏
  • Rochiman, K. & Purnobasuki, H. (2013). Effect of nitrogen supply and genotypic variation for nitrogen use efficiency in maize. Journal of Experimental Agriculture International, 182-199.‏
  • Rosielle, A. A. & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non‐stress environment 1. Crop Science, 21(6), 943-946.‏
  • Wu, Q. S. & Zou, Y. N. (2010). Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. Scientia Horticulturae, 125(3), 289-293.‏
  • Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y. & Chen, J. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae, 122(2), 200-208.‏
  • perature stress. Scientia Horticulturae, 125(3), 289-293.‏
  • Zhang, W., Jiang, B., Li, W., Song, H., Yu, Y. & Chen, J. (2009). Polyamines enhance chilling tolerance of cucumber (Cucumis sativus L.) through modulating antioxidative system. Scientia Horticulturae, 122(2), 200-208.‏