اثر سطوح مختلف نانوسلنیوم و سلنیوم بر جوانه‌زنی بذر و رشد دانه‌رست پیاز (Allium cepa L.)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

2 دانشیار گروه مهندسی تولید و ژنتیک گیاهی، دانشکده علوم و مهندسی کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

10.22034/iuvs.2021.521119.1136

چکیده

سلنیوم (Se) یک عنصر شبه‌فلز است که خصوصیات آنتی‌اکسیدانی آن برای انسان، حیوانات و گیاهان تأیید شده است. سلنیوم در برخی موجودات به‌عنوان عنصر ضروری محسوب می‌شود؛ اما غلظت‌های بالای آن منجر به ایجاد سمیت در گیاهان می‌گردد. بنابراین در تحقیق حاضر تأثیر سطوح و منابع مختلف سلنیوم بر جوانه‌‌زنی بذر و ویژگی‌های رشدی دانه‌رست پیاز در آزمایشگاه فیزیولوژی دانشکده‌ی علوم و مهندسی پردیس کشاورزی و منابع طبیعی دانشگاه رازی در سال 1398 مورد بررسی قرار گرفت. تیمارهای آزمایش شامل چهار غلظت سلنیت‌سدیم، سلنات‌سدیم و نانوسلنیوم (صفر؛ شاهد)، پنج، 10، 15 و 20 میلی‌گرم بر لیتر) بود. نتایج نشان داد سطوح و اشکال مختلف سلنیوم تأثیر معنی‌داری بر درصد جوانه‌زنی بذر و خصوصیات رشدی دانه‌رست پیاز داشتند. بیشترین درصد جوانه‌زنی (100 درصد) در تیمار 10 میلی‌گرم در لیتر نانوسلنیوم  حاصل شد، که تفاوت معنی‌داری با تیمار شاهد داشت. سلنیوم تأثیر مثبتی بر طول و وزن تازه‌ی ریشه‌چه‌ی پیاز نسبت به تیمار شاهد داشت، کمترین میزان طول ریشه‌چه (5 سانتی‌متر) در تیمار شاهد مشاهده شد. سطوح پایین سلنیوم تأثیر مثبتی بر میزان فعالیت آنزیم‌های سوپراکسید دیسموتاز، کاتالاز و پراکسیداز داشتند. در نهایت کاربرد سطوح 10 و 15 میلی‌گرم بر لیتر نانوسلنیوم می‌تواند جوانه‌‌زنی بذر پیاز را در مقایسه با سلنیت و سلنات سدیم بهبود ببخشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Different Levels of Nano-Selenium and Selenium on Seed Germination and Seedling Growth of Onion (Allium cepa L.)

نویسندگان [English]

  • Masoomeh Amerian 1
  • Iraj Nosratti 2
1 Assistant Professor, Department of Production Engineering and Plant Genetics, Faculty of Science and Agricultural Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
2 Associate Professor, Department of Production Engineering and Plant Genetics, Faculty of Science and Agricultural Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, IranResources, Razi University, Kermanshah, Iran
چکیده [English]

Selenium (Se) is a metalloid element whose antioxidant properties for humans, animals and plants have been confirmed. Selenium is considered as an essential element in some organisms, but its high concentrations lead to toxicity in plants. Selenium is an essential nutrient, but its role in plants requires more research. So in this research, the effect of different concentrations of selenium (sodium selenate and sodium selenite) and selenium nano-particles (Nano-Se) on onion (Allium cepa L.) seed germination properties and seedling growth was studied. The experimental treatments included four concentrations of sodium selenate and sodium selenite and selenium Nano-Se (5, 10, 15 and 20 mg.L-1) and control (distilled water). Different forms and concentrations of selenium had significant effect on onion seed germination. The highest germination percentage (100%) was observed in 10 mg.L-1 Nano-Se treatment. Selenium had a positive effect on the length and fresh weight of onion root compared to the control treatment, the lowest amount of root length was observed in the control treatment. Low levels of selenium had a positive effect on the activity of superoxide dismutase, catalase and peroxidase enzymes. Adding Nano-Se in concentrations 10 and 15 mg.L-1 could promote the seed germination of onion compared to sodium selenite and sodium selenate.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Germination indices
  • Seedling growth
-          Ali, F., Peng, Q., Wang, D., Cui, Z., Huang, J., Fu, D. & Liang, D. (2017). Effects of selenite and selenate application on distribution and transformation of selenium fractions in soil and its bioavailability for wheat (Triticum aestivum L.). Environmental Science and Pollution Research, 24(9), 8315-8325.‏
-          Chernikova, O. V., Ampleeva, L. E. & Mazhaisky, Y. A. (2019). Effect of selenium nanoparticles on the formation of corn yield. Russian Agricultural Sciences, 45(3), 256-259.‏
-          Bidgoli, R. D. (2019). The effect of selenium nanoparticles (Se NPs), on germination and some morphophysiological characteristics of (Astragalus gossypinus Fisher.) in MS culture medium. Iranian Journal of Range and Desert Research, 26(4), 1055-1068.‏
-          Du, B., Luo, H., He, L., Zhang, L., Liu, Y., Mo, Z., Z., Pan, S., Tian, H., Duan, M. & Tang, X. (2019). Rice seed priming with sodium selenate: Effects on germination, seedling growth, and biochemical attributes. Scientific Reports, 9(1), 1-9.‏
-          Galochkina, N. A., Glotova, I. A. & Podlesnykh, N. V. (2020). Influence of germination of wheat grain with selenium sources on the components of protein-carbohydrate complex. In IOP Conference Series: Earth and Environmental Science, 422, 1-10.‏
-          Guardado-Felix, D., Serna-Saldivar, S. O., Gutierrez-Uribe, J. A. & Chuck-Hernandez, C. (2019). Selenium in germinated chickpea (Cicer arietinum L.) increases the stability of its oil fraction. Plants, 8(5), 113.‏
-          Gul, H., Kinza, S., Shinwari, Z. K. & Hamayun, M. (2017). Effect of selenium on the biochemistry of Zea mays under salt stress. Pakistan Journal of Botany, 49, 25-32.‏
-          Hernandez-Hernandez, H., Quiterio-Gutierrez, T., Cadenas-Pliego, G., Ortega-Ortiz, H., Hernandez-Fuentes, A. D., Cabrera de la Fuente, M., Valdes-Reyna, J.  & Juarez-Maldonado, A. (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants, 8(10), 355.‏
-          Iranifam, M., Fathinia, M., Rad, T. S., Hanifehpour, Y., Khataee, A. R. & Joo, S. W. (2013). A novel selenium nanoparticles-enhanced chemiluminescence system for determination of dinitrobutylphenol. Talanta, 107, 263-269.‏
-          Jing, S., Jinyi, W., Xi, L., Jinhua, Q., Suyuan, D. & Na, Y. (2019). Effects of selenium and cobalt on germination of Alfalfa (Medicago sativa) at different temperatures. Animal Husbandry and Feed Science, 11(3), 115-124.‏
-          Joshi, H., Kumar, R., Pandey, D. S. & Jariwala, Ch. (2020). Effect of plasma and nanotechnology on nutrient use efficiency of wheat (Triticum aestivum L(.. Journal of Pharmacognosy and Phytochemistry, 9(2), 137-141.
-          Kubisz, L., Hołubowicz, R., Gauza, M., Li, H., Hojan-Jezierska, D. & Jaroszyk, F. (2012). Effect of low frequency magnetic field on germination of onion (Allium cepa L.) seeds. Acta Physica Polonica A, 1(121), 49-53.‏
-          Lapaz, A. D. M., Santos, L. F. D. M., Yoshida, C. H. P., Heinrichs, R., Campos, M. & Reis, A. R. D. (2019). Physiological and toxic effects of selenium on seed germination of cowpea seedlings. Bragantia, 78(4), 498-508.‏
-          Li, R., He, J., Xie, H., Wang, W., Bose, S. K., Sun, Y., Y., Hu, & Yin, H. (2019). Effects of chitosan nanoparticles on seed germination and seedling growth of wheat (Triticum aestivum L.). International Journal of Biological Macromolecules, 126, 91-100.‏
-          Lin, D. & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150(2), 243-250.‏
-          Lu, N., Wu, L. & Shi, M. (2020). Selenium enhances the vase life of Lilium longiflorum cut flower by regulating postharvest physiological characteristics. Scientia Horticulturae, 264, 109172.‏
-          Madamanchi, N. R., Donahue, J. L., Cramer, C. L., Alscher, R. G. & Pedersen, K. (1994). Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short-term exposure to sulfur dioxide. Plant Molecular Biology, 26(1), 95-103.‏
-          Maguire, J. D. (1962). Speed of germination-Aid in selection and evaluation for seedling emergence and vigor 1. Crop Science, 2(2), 176-177.‏
-          Mahmoodzadeh, H. & Aghili, R. (2014). Effect on germination and early growth characteristics in wheat plants (Triticum aestivum L.) seeds exposed to TiO2 nanoparticles.‏ Journal of Chemical Health Risks, 4(1), 29-36.
-          Malheiros, R. S., Costa, L. C., Avila, R. T., Pimenta, T. M., Teixeira, L. S., Brito, F. A., Zsogon, A., Araujo, W. L. & Ribeiro, D. M. (2019). Selenium downregulates auxin and ethylene biosynthesis in rice seedlings to modify primary metabolism and root architecture. Planta, 250(1), 333-345.‏
-          de Brito Mateus, M. P., Tavanti, R. F. R., Galindo, F. S., da Rocha Silva, A. C., Gouveia, G. C. C., Aparecido, C. F. F., Carr, N. F., Feitosa, Y. B., Santos, E. F., Lavres, J. & Dos Reis, A. R. (2020). Coffea arabica seedlings genotypes are tolerant to high induced selenium stress: Evidence from physiological plant responses and antioxidative performance. Ecotoxicology and Environmental Safety, 203, 111016.‏
-          Matthews, S. & Khajeh-Hosseini, M. (2007). Length of the lag period of germination and metabolic repair explain vigour differences in seed lots of maize (Zea mays). Seed Science and Technology, 35(1), 200-212.‏
-          Maxwell, D. P. & Bateman, D. F. (1967). Changes in the activities of some oxidases in extracts of Rhizoctonia-infected bean hypocotyls in relation to lesion maturation. Phytopathology, 57(5), 132-136.‏
-          Nie, L., Liu, H., Zhang, L. & Wang, W. (2020). Enhancement in rice seed germination via improved respiratory metabolism under chilling stress. Food and Energy Security, 9(4), e234.‏
-          Rady, M. O., Semida, W. M., Abd El-Mageed, T. A., Howladar, S. M. & Shaaban, A. (2020). Foliage applied selenium improves photosynthetic efficiency, antioxidant potential and wheat productivity under drought stress. International Journal of Agriculture and Biology, 24(5), 1293-1300.‏
-          Salama, D. M., Abd El-Aziz, M. E., Rizk, F. A. & Abd Elwahed, M. S. A. (2020). Applications of nanotechnology on vegetable crops. Chemosphere, 129026.‏
-          Shinde, S., Paralikar, P., Ingle, A. P. & Rai, M. (2020). Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arabian Journal of Chemistry, 13(1), 3172-3182.‏
-          Stampoulis, D., Sinha, S. K. & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473-9479.‏
-          Suriyasak, C., Oyama, Y., Ishida, T., Mashiguchi, K., Yamaguchi, S., Hamaoka, N., Iwaya-Inoue, M. & Ishibashi, Y. (2020). Mechanism of delayed seed germination caused by high temperature during grain filling in rice (Oryza sativa L.). Scientific Reports, 10(1), 1-11.‏
-          Tavakoli, S., Enteshari, S. & Yousefifard, M. (2020). Investigation of the effect of selenium on growth, antioxidant capacity and secondary metabolites in Melissa officinalis. Plant Physiology, 10(2), 3125-3134.‏
-          Tymoszuk, A. & Wojnarowicz, J. (2020). Zinc oxide and zinc oxide nanoparticles impact on in vitro germination and seedling growth in Allium cepa L. Materials, 13(12), 2784.‏
-          Ulhassan, Z., Gill, R. A., Huang, H., Ali, S., Mwamba, T. M., Ali, B., Huang, Q., Hamid, Y., Khan, A. R., Wang, J. & Zhou, W. (2019). Selenium mitigates the chromium toxicity in Brassicca napus L. by ameliorating nutrients uptake, amino acids metabolism and antioxidant defense system. Plant Physiology and Biochemistry, 145, 142-152.‏
-          Vashisth, A. & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology, 167(2), 149-156.‏
-          Vidyasekharan, P. & Durairaj, P. (1973). Shot hole syndrome in mango. Indian Phytopath, 26, 49-55.‏
-          Wu, M., Cong, X., Li, M., Rao, S., Liu, Y., Guo, J., hu, S., Chen, Sh., Xu, F., Cheng, Sh., Liu, L. & Yu, T. (2020). Effects of different exogenous selenium on Se accumulation, nutrition quality, elements uptake, and antioxidant response in the hyperaccumulation plant Cardamine violifolia. Ecotoxicology and Environmental Safety, 204, 111045.‏
-          Yao, C., Zhang, F., Sun, X., Shang, D., He, F., Li, X., Zhang, J. & Jiang, X. (2019). Effects of S-abscisic acid (S-ABA) on seed germination, seedling growth, and Asr1 gene expression under drought stress in maize. Journal of Plant Growth Regulation, 38(4), 1300-1313.‏
-          Zeid, I. M., Gharib, Z. F. A. E., Ghazi, S. M. & Ahmed, E. Z. (2019). Promotive effect of ascorbic acid, gallic acid, selenium and nano-selenium on seed germination, seedling growth and some hydrolytic enzymes activity of cowpea (Vigna unguiculata) seedling. Journal of Plant Physiology & Pathology, 7, 1-8.‏