تأثیر کافئیک اسید بر رشد و کاهش اثرات مخرب تنش شوری در خیار گلخانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 دانش‌آموخته کارشناسی ارشد علوم باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

10.22034/iuvs.2021.131965.1114

چکیده

به‌منظور بررسی اثر کافئیک اسید بر رشد و صفات فیزیولوژیکی خیار (Cucumis sativus var. Super daminos) تحت شرایط تنش شوری، آزمایشی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه تحقیقاتی دانشگاه صنعتی اصفهان در سال 1397 انجام شد. فاکتورهای آزمایش شامل شوری در چهار سطح (صفر، 50، 100 و 150 میلی‌مولار از نمک کلرید سدیم) و کافئیک اسید در چهار سطح شامل (صفر، دو، چهار و شش میلی‌گرم در لیتر) بودند. نتایج نشان داد در تمام سطوح شوری، تیمارهای فاقد کافئیک اسید، پایین‌ترین مقدار فتوسنتز را نشان دادند. محتوای نسبی آب در تیمارهای فاقد شوری با افزایش غلظت کافئیک اسید به‌طور معنی‌داری کاهش یافت؛ اما در بالاترین سطح شوری، کاربرد دو میلی‌گرم در لیتر کافئیک اسید سبب افزایش محتوای نسبی آب گردید. در سطح شوری 100 و 150 میلی‌گرم در لیتر، کاربرد کافئیک اسید سبب افزایش فعالیت آنتی‌اکسیدانی نسبت به شاهد شد. به‌طوری‌که بیشترین مقدار در تیمارهای 150 میلی‌مولار کلرید سدیم و دو میلی‌گرم در لیتر کافئیک اسید (27/0 درصد) و 100 میلی‌مولار کلرید سدیم و شش میلی‌گرم در لیتر (25/0 درصد) مشاهده شد. به‌نظر می‌رسد که کافئیک اسید در غلظت‌های پایین باعث بهبود خصوصیات رشد و فیزیولوژیکی خیار می‌شود؛ اما در غلظت‌های بالا اثر سمی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Caffeic Acid on Growth and Reducing the Destructive Effects of Salinity on Greenhouse Cucumber (Cucumis sativus var. Super daminos)

نویسندگان [English]

  • Maryam Haghighi 1
  • Zeinab Masoumi 2
1 Associate Professor, Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
2 M.Sc. Graduate, Department of Horticulture, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

To investigate the effect of different levels of salinity and caffeic acid on growth and physiological characteristics of cucumber (Cucumis sativus var. Super daminos), a factorial experiment was conducted in completely randomized design with three replications with salinity treatments 0, 50, 100, 150 mM NaCl and caffeic acid 2, 4 and 6 mg.L-1 in research greenhouse of Isfahan University of Technology. The results showed that shoot dry weight at a concentration of 6 mg.L-1 reduced. In all salinity levels, treatments lacking caffeic acid showed the lowest amount of photosynthesis that the lowest amount observed in 50 mM NaCl × 4 mg.L-1 caffeic acid treatment. Relative water content in lacking saline treatments decreased significantly with increasing caffeic acid concentration, but at the highest salinity level, 4 mg.L-1 caffeic acid application increased the relative water content. Caffeic acid application increased salinity levels of 100 and 150 mg.L-1 and increased antioxidant activity than control so that the highest amount was observed in 150 mM NaCl × 2 mg.L-1 caffeic acid (0.27 %) and 100 mM NaCl × 6 mg.L-1 caffeic acid (0.25 %) treatments. It seems that caffeic acid at low concentrations improves the growth and physiological characteristics of cucumber, but has a toxic effect in high concentrations.

کلیدواژه‌ها [English]

  • Caffeic acid
  • Chlorophyll fluorescence
  • Phenol
  • Proline
  • Salinity stress
-          Abu-Zinada, I. A. (2015). Effect of salinity levels and application stage on cucumber and soil under greenhouse condition. International Journal of Agriculture and Crop Sciences, 8(1), 73-80.
-          Alsadon, A. A., Wahb-Allah, M. A. & Khalil, S. O. (2006). Growth, yield and quality of three greenhouse cucumber cultivars in relation to two types of water applied at different growth stages. Journal of King Saud University, 18, 89-102.‏
-          Amari, T., Ghnaya, T., Debez, A., Taamali, M., Youssef, N. B., Lucchini, G. & Abdelly, C. (2014). Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: metal accumulation, nutrient status and photosynthetic activity. Journal of Plant Physiology, 171(17), 1634-1644.‏
-          Aroiee, H., Farhadi, A., Nemati, H., Salehi, R. & Giuffrida, F. (2017). The effects of grafting to improve salinity tolerance in greenhouse cucumber cv. Spadana. Journal of Science and Technology of Greenhouse Culture-Isfahan University of Technology, 8(3), 121-138.‏
-          Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
-          Barrs, H. D. & Weatherley, P. E. (1962). A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15, 413-428.
-          Colla, G., Rouphael, Y., Cardarelli, M., Massa, D., Salerno, A. & Rea, E. (2006a). Yield, fruit quality and mineral composition of grafted melon plants grown under saline conditions. The Journal of Horticultural Science and Biotechnology, 81(1), 146-152.‏
-          Colla, G., Roupahel, Y., Cardarelli, M. & Rea, E. (2006b). Effect of salinity on yield, fruit quality, leaf gas exchange, and mineral composition of grafted watermelon plants. HortScience, 41(3), 622-627.‏
-          Colla, G., Rouphael, Y., Leonardi, C. & Bie, Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2), 147-155.‏
-          Colla, G., Rouphael, Y., Rea, E. & Cardarelli, M. (2012). Grafting cucumber plants enhance tolerance to sodium chloride and sulfate salinization. Scientia Horticulturae, 135, 177-185.‏
-          Daiponmak, W., Theerakulpisut, P., Thanonkao, P., Vanavichit, A. & Prathepha, P. (2010). Changes of anthocyanin cyanidin-3-glucoside content and antioxidant activity in Thai rice varieties under salinity stress. Science Asia, 36, 286-291.‏
-          Dias, M. C., Monteiro, C., Moutinho-Pereira, J., Correia, C., Gonçalves, B. & Santos, C. (2013). Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiologiae Plantarum, 35(4), 1281-1289.‏
-          Efeoglu, B., Ekmekci, Y. N., & Cicek, N. N. (2009). Physiological responses of three maize cultivars to drought stress and recovery. South African Journal of Botany, 75(1), 34-42.‏
-          Fang, T., Cao, Z., Li, J., Shen, W. & Huang, L. (2014). Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato. Plant Physiology and Biochemistry, 76, 44-51.‏
-          Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G. & Cicek, N. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164(6), 728-736.‏
-          Hamada, A. & El-Enany, A. (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Plant Biology,36, 75-81.
-          Hossein, M. M., Shaaban, M. M. & El-Saady, A. K. (2008). Response of cowpea Grown under salinity stress to PK-flior applications. Journal of American Plant Physiology, 4, 1-8.‏
-          Howladar, S. M. (2014). A novel Moringa oleifera leaf extract can mitigate the stress effects of salinity and cadmium in bean (Phaseolus vulgaris L.) plants. Ecotoxicology and Environmental Safety, 100, 69-75.‏
-          Huang, C., Zhao, S., Wang, L., Anjum, S. A., Chen, M., Zhou, H. & Zou, C. (2013). Alteration in chlorophyll fluorescence, lipid peroxidation and antioxidant enzymes activities in hybrid ramie (Boehmeria nivea L.) Under drought stress. Australian Journal of Crop Science, 7(5), 594.‏
-          Huang, C., Wei, G., Jie, Y., Wang, L., Zhou, H., Ran, C. & Anjum, S. A. (2014). Effects of concentrations of sodium chloride on photosynthesis, antioxidative enzymes, growth and fiber yield of hybrid ramie. Plant Physiology and Biochemistry, 76, 86-93.‏
-          Jimenez-Arias, D., Borges, A. A., Luis, J. C., Valdés, F., Sandalio, L. M. & Perez, J. A. (2015). Priming effect of menadione sodium bisulphite against salinity stress in Arabidopsis involves epigenetic changes in genes controlling proline metabolism. Environmental and Experimental Botany, 120, 23-30.‏
-          Kahrizi, S., Sedighi, M. & Sofalian, O. (2012). Effect of salt stress on proline and activity of antioxidant enzymes in ten durum wheat cultivars. Annals of Biological Research, 3(8), 3870-3874.‏
-          Kaya, M. D., Okcu, G., Atak, M., Cıkılı, Y. & Kolsarıcı, O. (2006). Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy, 24(4), 291-295.‏
-          Kim, H. J., Chen, F., Wang, X. & Rajapakse, N. C. (2005). Effect of chitosan on the biological properties of sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food Chemistry, 53(9), 3696-3701.‏
-          Koushafar, M., Khoshgoftarmanesh, A. H., Moezzi, A. & Mobli, M. (2011). Effect of dynamic unequal distribution of salts in the root environment on performance and Crop Per Drop (CPD) of hydroponic-grown tomato. Scientia Horticulturae, 131, 1-5.‏
-          Liu, Y. F., Zhang, G. X., Qi, M. F. & Li, T. L. (2015). Effects of calcium on photosynthesis, antioxidant system, and chloroplast ultrastructure in tomato leaves under low night temperature stress. Journal of Plant Growth Regulation, 34(2), 263-273.‏
-          Misra, N. & Gupta, A. K. (2005). Effect of salt stress on proline metabolism in two high yielding genotypes of green gram. Plant Science, 169(2), 331-339.‏
-          Misra, N. & Saxena, P. (2009). Effect of salicylic acid on proline metabolism in lentil grown under salinity stress. Plant Science, 177(3), 181-189.‏
-          Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663.‏
-          Nakashima, K., Ito, Y. & Yamaguchi-Shinozaki, K. (2009). Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiology, 149(1), 88-95.‏
-          Pospisil, P. (2012). Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1817(1), 218-231.‏
-          Rady, M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae, 129(2), 232-237.‏
-          Razzaghi, F., Ahmadi, S. H., Adolf, V. I., Jensen, C. R., Jacobsen, S. E. & Andersen, M. N. (2011). Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying. Journal of Agronomy and Crop Science, 197(5), 348-360.‏
-          Shabala, S. (2013). Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Annals of Botany, 112(7), 1209-1221.‏
-          Singh, R. P., Chidambara Murthy, K. N. & Jayaprakasha, G. K. (2002). Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. Journal of Agricultural and Food Chemistry, 50(1), 81-86.‏
-          Sudhir, P. & Murthy, S. D. S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42(2), 481-486.‏
-          Yang, C., Zhao, L., Zhang, H., Yang, Z., Wang, H., Wen, S. & Liu, B. (2014). Evolution of physiological responses to salt stress in hexaploid wheat. Proceedings of the National Academy of Sciences, 111(32), 11882-11887.‏
-          Yarami, N. & Sepaskhah, A. R. (2015). Physiological growth and gas exchange response of saffron (Crocus sativus L.) to irrigation water salinity, manure application and planting method. Agricultural Water Management, 154, 43-51.‏