نقش براسینواستروئید و سالیسیلیک اسید بر رشد و تجمع کادمیوم در اسفناج تحت شرایط تنش کادمیوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر مرکز تحقیقات تغذیه، دانشکده تغذیه و علوم غذایی، دانشگاه علوم پزشکی شیراز. ایران

2 دانشیار مرکز تحقیقات تغذیه، دانشکده تغذیه و علوم غذایی، دانشگاه علوم پزشکی شیراز. ایران

10.22034/iuvs.2021.139084.1125

چکیده

به‌منظور بررسی تأثیر پیش‌تیمار بذر و محلول­پاشی بوته­ها با سالیسیلیک اسید و براسینواستروئید بر رشد و تجمع کادمیوم در اسفناج تحت شرایط تنش کادمیوم، آزمایشی به‌صورت فاکتوریل در قالب طرح پایه بلوک‌های کامل تصادفی با سه تکرار در مرکز تحقیقات تغذیه، دانشگاه علوم پزشکی شیراز در سال 1399 اجرا گردید. فاکتورهای آزمایش شامل سالیسیلیک اسید (صفر، 5/0 و 75/0 میلی‌مولار)، براسینواستروئید (صفر، 5/0 و 75/0 میکرو مولار) و تنش کادمیوم (صفر، 300 و 600 میکرو مولار) بودند. نتایج نشان داد تنش کادمیوم موجب افزایش میزان مالون دی‌آلدهید، پراکسید هیدروژن و نشت یونی و کاهش زیست‌توده گیاه گردید. فعالیت آنزیم‌های آنتی‌اکسیدان، میزان کربوهیدرات‌ها و پرولین تحت تنش 600 میکرو مولار کادمیوم افزایش یافت. کاربرد براسینواستروئید و سالیسیلیک اسید، در شرایط تنش 600 میکرو مولار کادمیوم، باعث کاهش غلظت مالون دی‌آلدهید، پراکسید هیدروژن، نشت یونی و افزایش فعالیت آنزیم­های آنتی‌اکسیدان مانند پراکسیداز، سوپراکسید دیسموتاز، کاتالاز و آسکوربات پراکسیداز شد و تأثیر کاربرد توأم این دو ماده بیشتر از کاربرد جداگانه هر کدام از آن‌ها بود. تحت تنش کادمیوم، کاربرد 5/0 میلی‌مولار سالیسیلیک اسید، 75/0 میلی‌مولار سالیسیلیک اسید، 50/0 میکرو  مولار براسینواستروئید، 75/0 میکرو  مولار براسینواستروئید، 5/0 میلی‌مولار سالیسیلیک اسید+ 50/0 میکرو  مولار براسینواستروئید، 5/0 میلی‌مولار سالیسیلیک اسید+ 75/0 میکرو  مولار براسینواستروئید، 75/0 میلی‌مولار سالیسیلیک اسید+ 50/0 میکرو  مولار براسینواستروئید و 75/0 میلی‌مولار سالیسیلیک اسید+ 75/0 میکرو  مولار براسینواستروئید، به‌ترتیب موجب کاهش 68/12، 68/13، 93/13، 13/22، 37/25، 09/30، 34/30 و 02/45 درصدی میزان کادمیوم در برگ گردید. همچنین اعمال این تیمارها به‌ترتیب موجب کاهش 53/6، 13/10، 76/11، 30/18، 30/26، 67/32، 34/33 و 81/42 درصدی کادمیوم در ریشه اسفناج شد. پیش‌تیمار بذر و محلول‌پاشی براسینواستروئید و سالیسیلیک اسید، تحمل گیاه را در برابر تنش کادمیوم، از طریق افزایش فعالیت سیستم آنتی‌اکسیدان و تجمع اسمولیت‌ها و بهبود پایداری غشا افزایش داد. نتایج این پژوهش نمانگر آن است که کاربرد کاربرد توأم براسینواستروئید و سالیسیلیک اسید نسبت به کاربرد جداگانه کیفیت اسفناج را بهبود بخشید و تأثیر آن‌ها بیشتر از کاربرد هر کدام به‌تنهایی بود.

کلیدواژه‌ها


عنوان مقاله [English]

The Role of Brassinosteroids and Salicylic Acid on Spinach Growth and Cadmium Accumulation under Cadmium Stress

نویسندگان [English]

  • Kobra Maghsoudi 1
  • Elham Ashrafi Dehkordi 1
  • Seyeed Mohammad Mazloumi 2
1 Researcher, Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
2 Associate Professor, Nutrition Research Center, Department of Food Hygiene and Quality Control, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, IranMedical Sciences, Shiraz, Iran
چکیده [English]

A greenhouse investigation was performed to examine the influence of seed priming and foliar application of salicylic acid and brassinolide on growth and cadmium accumulation of spinach under cadmium stress conditions at Nutrition Research Center, Department of Food Hygiene and Quality Control, Shiraz University of Medical Sciences during 2020 using a factorial as randomized complete block design with three replications. Experimental treatments were including salicylic acid (0, 0.5 and 0.75 mM), and brassinolide (0, 0.5 and 0.75 μM) and cadmium (0, 300 and 600 μM). The results showed that cadmium stress enhanced the concentrations of malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL) as well as reduced the spinach biomass. Under Cd stress conditions, the activities of antioxidant enzymes such as peroxidase, superoxide dismutase, catalase and ascorbate peroxidase and the concentrations of proline and carbohydrates increased. Also, application of SA and Br considerably reduced the MDA and H2O2 content and EL, in contrast, elevated the activities of antioxidant enzymes and osmolytes content in Cd-stressed spinach plants, however; the positive effects of SA were high when applied with Br. It was found that the cadmium content in the root was greater than that of spinach leaves. Under 600 μM cadmium stress conditions, application of 0.5 mM salicylic acid, 0.75 mM salicylic acid, 0.50 μM brassinosteroid, 0.75 μM brassinosteroid, 0.5 mM salicylic acid+ 0.5 μl brassinosteroid, 0.5 μM salicylic acid /0 0 mM+ 0.75 μM brasinosteroid, 0.75 μM salicylic acid+ 0.50 μM brasinosteroid and 0.75 μM salicylic acid reduced the cadmium content 12.68, 13.68, 13.93, 22.13, 25.37, 30.09, 30.34 and 45.02% respectively in leaf compared to the non-use of these hormones. As well as the application of these treatments reduced 6.53, 10.13, 11.76, 18.30, 26.30, 32.67, 33.34 and 42.81% respectively in root compared to the non-use of these hormones. In conclusion, alleviation of Cd stress by seed priming and foliar application of Br and SA was associated partially with enhanced the activity of the antioxidant system, increase the accumulation of proline and carbohydrates, as well as improve cell membrane stability. Generally, supplementation with Br and SA had a significant effect on reducing the accumulation of cadmium and improving quality and quantity of spinach under Cd-stress.

کلیدواژه‌ها [English]

  • Antioxidant enzymes
  • Osmolytes
  • Plant growth regulators
-           Amooaghaie, R., Marefat, E. & Shabani, L. (2013). Interaction of salicylic acid and cadmium on growth, photosynthetic pigments and ion distrubiution in arial parts of soybean plantlets. Iranian Journal of Plant Biology, 4(14), 75-88. (In Farsi)
-           Amorim-Silva, V., Garcia-Moreno, A., Castillo, A. G., Lakhssassi, N., Del Valle, A. E., Perez-Sancho, J., Li, Y., Pose, D., Perez-Rodriguez, J., Lin, J., Valpuesta, V., Borsani, O., Zipfel, C., Macho, A. P. & Botella, M. A. (2019). TTL proteins scaffold brassinosteroid signaling components at the plasma membrane to optimize signal transduction in Arabidopsis. The Plant Cell, 31(8), 1807-1828.
-           Bastos, E., Schneider, M., de Quadros, D. P. C., Welz, B., Batista, M. B., Horta, P. A., Rorig, L. R. & Barufi, J. B. (2019). Phytoremediation potential of Ulva ohnoi (Chlorophyta): Influence of temperature and salinity on the uptake efficiency and toxicity of cadmium. Ecotoxicology and Environmental Safety, 174, 334-343.
-           Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
-           Beigi, H. H. & Banitalebi, G. (2013). The effect of twenty-three years of surface irrigation with treated municipality wastewater on soil loadings, transfer to wheat and corn grains, and related health risks of some heavy metals. Journal of Water and Soil (Agricultural Science), 27, 570-570.
-           Bogdan, K. & Schenk, M. K. (2008). Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environmental Science & Technology, 42(21), 7885-7890.
-           Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
-           Demiral, T. & Turkan, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257.
-           Dhindsa, R. S. & Matowe, W. (1981). Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany, 32(1), 79-91.
-           Dong, Y., Wang, W., Hu, G., Chen, W., Zhuge, Y., Wang, Z. & He, M. R. (2017). Role of exogenous 24-epibrassinolide in enhancing the salt tolerance of wheat seedlings. Journal of Soil Science and Plant Nutrition, 17(3), 554-569.
-           Drazic, G., Mihailovic, N. & Lojic, M. (2006). Cadmium accumulation in Medicago sativa seedlings treated with salicylic acid. Biologia Plantarum, 50(2), 239-244.
-           Eraslan, F., Inal, A., Pilbeam, D. J. & Gunes, A. (2008). Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regulation, 55(3), 207-219.
-           Finnegan, P., & Chen, W. (2012). Arsenic toxicity: the effects on plant metabolism. Frontiers in Physiology, 3, 182-190.
-           Gupta, D. K., Tiwari, S., Razafindrabe, B. H. N. & Chatterjee, S. (2017). Arsenic contamination from historical aspects till present situation. In: D. K. Gupta & S. Chatterjee (Eds.), Arsenic Contamination in the Environment: The Issues and Solutions. (pp. 1-12). Springer International Publishing AG: Cham, Switzerland.
-           Hall, J. A. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1-11.
-           Han, T. W., Tseng, C. C., Cai, M., Chen, K., Cheng, S. Y. & Wang, J. (2020). Effects of cadmium on bioaccumulation, bioabsorption, and photosynthesis in Sarcodia suiae. International Journal of Environmental Research and Public Health, 17(4), 1294-1304.
-           Hasan, S. A., Hayat, S. & Ahmad, A. (2011). Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere, 84(10), 1446-1451.
-           Hayat, S. & Ahmad, A. (2007). Salicylic acid-a plant hormone. Springer Science & Business Media.
-           Hayat, S., Ali, B., Hasan, S. A. & Ahmad, A. (2007). Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environmental and Experimental Botany, 60(1), 33-41.
-           Ji, Y., Xie, X. & Wang, G. (2018). Effects of the heavy metal cadmium on photosynthetic activity and the xanthophyll cycle in Phaeodactylum tricornutum. Journal of Oceanology and Limnology, 36(6), 2194-2201.
-           Karimi, G., Ghorbanli, M., Heidari, H., Nejad, R. K. & Assareh, M. H. (2005). The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrata. Biologia Plantarum, 49(2), 301-304.
-           Katsumi, M. (1985). Interaction of a brassinosteroid with IAA and GA3 in the elongation of cucumber hypocotyl sections. Plant and Cell Physiology, 26(4), 615-625.
-           Kaya, C., Ashraf, M., Alyemeni, M. N. & Ahmad, P. (2020). The role of nitrate reductase in brassinosteroid-induced endogenous nitric oxide generation to improve cadmium stress tolerance of pepper plants by upregulating the ascorbate-glutathione cycle. Ecotoxicology and Environmental Safety, 196, 110483.
-           Kazemzadeh Khouei, J., Nouri, A., Pourang, N., Alizadeh, M., Ghoreishi, J. & Padash, A. (2012). Evaluation of heavy metals Nickel. Lead, Copper, Manganese, Zinc, Cadmium and Vanadium in edible vegetables of south of Tehran. Environmental Research, 3, 65-74.
-           Khan, E. & Gupta, M. (2018). Arsenic–silicon priming of rice (Oryza sativa L.) seeds influence mineral nutrient uptake and biochemical responses through modulation of Lsi-1, Lsi-2, Lsi-6 and nutrient transporter genes. Scientific Reports, 8(1), 1-16.
-           Liu, C. W., Chen, Y. Y., Kao, Y. H. & Maji, S. K. (2014). Bioaccumulation and translocation of arsenic in the ecosystem of the Guandu Wetland, Taiwan. Wetlands, 34(1), 129-140.
-           Liu, C., Guo, J., Cui, Y., Lü, T., Zhang, X. & Shi, G. (2011). Effects of cadmium and salicylic acid on growth, spectral reflectance and photosynthesis of castor bean seedlings. Plant and Soil, 344(1), 131-141.
-           Lu, Q., Zhang, T., Zhang, W., Su, C., Yang, Y., Hu, D. & Xu, Q. (2018). Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid. Ecotoxicology and Environmental Safety, 147, 500-508.
-           Maghsoudi, K., Arvin, M. J. & Ashraf, M. (2019). Mitigation of arsenic toxicity in wheat by the exogenously applied salicylic acid, 24-epi-brassinolide and silicon. Journal of Soil Science and Plant Nutrition, 1-12.
-           Maghsoudi, K., Emam, Y., Ashraf, M. & Arvin, M. J. (2019). Alleviation of field water stress in wheat cultivars by using silicon and salicylic acid applied separately or in combination. Crop and Pasture Science, 70(1), 36-43.
-           Maghsoudi, K., Emam, Y., Niazi, A., Pessarakli, M. & Arvin, M. J. (2018). P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. Journal of Plant Interactions, 13(1), 461-471.
-           Majumdar, S., Sachdev, S. & Kundu, R. (2020). Salicylic acid mediated reduction in grain cadmium accumulation and amelioration of toxicity in Oryza sativa L. cv Bandana. Ecotoxicology and Environmental Safety, 205, 111167.
-           Metwally, A., Finkemeier, I., Georgi, M. & Dietz, K. J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132(1), 272-281.
-           Mitra, A., Chatterjee, S., Moogouei, R. & Gupta, D. K. (2017). Arsenic accumulation in rice and probable mitigation approaches: a review. Agronomy, 7(4), 67-75.
-           Mohajer, R., Salehi, M. H. & Mohammadi, J. (2014). Investigation of lead and cadmium concentrations in agricultural products (lettuce, cabbage, onion and beet) of Isfahan province. Journal of Health and Environment, Scientific Research Quarterly. Iranian Scientific Association of Environmental Health, 7, 10-1.
-           Nolan, T., Vukasinovic, N., Liu, D., Russinova, E. & Yin, Y. (2019). Brassinosteroids: multi-dimensional regulators of plant growth, development, and stress responses. The Plant Cell, doi:10.1105/tpc.19.00335
-            Orcutt, D. M. & Nilsen, E. T. (2000). The physiology of plants under stress, soil and biotic factors. John Wiley and Sons, New York.
-           Page, A. L., Miller, R. H. & Keeney, D. R. (1982). Methods of soil analysis. Agronomy, 24, 26-92.
-           Pigna, M., Cozzolino, V., Giandonato Caporale, A., Mora, M. L., Di Meo, V., Jara, A. A. & Violante, A. (2010). Effects of phosphorus fertilization on arsenic uptake by wheat grown in polluted soils. Journal of Soil Science and Plant Nutrition, 10(4), 428-442.
-           Popova, L. P., Maslenkova, L. T., Yordanova, R. Y., Ivanova, A. P., Krantev, A. P., Szalai, G. & Janda, T. (2009). Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiology and Biochemistry, 47(3), 224-231.
-           Sanjari, S., Keramat, B., Nadernejad, N. & Mozafari, H. (2019). Ameliorative effects of 24-epibrassinolide and thiamine on excess cadmium-induced oxidative stress in Canola (Brassica napus L.) plants. Journal of Plant Interactions, 14(1), 359-368.
-           Schilling, G., Schiller, C. & Otto, S. (1991). Influence of brassinosteroids on organ relations and enzyme activities of sugar-beet plants. Chemistry, Bioactivity and Applications, 474, 208-219.
-           Sudhakar, C., Lakshmi, A. & Giridarakumar, S. (2001). Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161(3), 613-619.
-           Sullivan, C.Y. & Ross, W.M. (1979). Selecting for drought and heat resistance in grain sorghum. In: H. Mussell & R. C. Staples (Eds.), Stress Physiology in Crop Plants. (pp. 263-281). John Wiley and Sons, New York.
-           Tripathi, P., Tripathi, R. D., Singh, R. P., Dwivedi, S., Goutam, D., Shri, M.,  Trivedi., P. K. & Chakrabarty, D. (2013). Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecological Engineering, 52, 96-103.
-           Viciedo, D. O., de Mello Prado, R., Toledo, R. L., dos Santos, L. C. N., Hurtado, A. C., Nedd, L. L. T. & Gonzalez, L. C. (2019). Silicon supplementation alleviates ammonium toxicity in sugar beet (Beta vulgaris L.). Journal of Soil Science and Plant Nutrition, 19(2), 413-419.
-           Yang, Z. M., Wang, J., Wang, S. H. & Xu, L. L. (2003). Salicylic acid-induced aluminum tolerance by modulation of citrate efflux from roots of Cassia tora L. Planta, 217(1), 168-174.
-           Xiong, Z. T. & Qiu, H. J. (2007). Salicylic acid alleviates the cadmium toxicity in Chinese cabbages (Brassica chinensis). Pakistan Journal of Biological Sciences, 10(18), 3065-3071.
-           Zhang, Z. J., Li, H. Z., Zhou, W. J., Takeuchi, Y. & Yoneyama, K. (2006). Effect of 5-aminolevulinic acid on development and salt tolerance of potato (Solanum tuberosum L.) microtubers in vitro. Plant Growth Regulation, 49, 27-34.