پاسخ‌های مورفولوژیکی و بیوشیمیایی مرزه تابستانه (Satureja hortensis L.) در استفاده از نانوکود کلات کامل

نوع مقاله : مقاله پژوهشی


استادیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران



استفاده نادرست از کود‌های شیمیایی اثرات مخرب و غیرقابل برگشتی به ساختار و تعادل عناصر غذایی خاک وارد کرده است. به همین منظور، امروزه کاربرد کود‌های نانو در جهت حفظ اکوسیستم کشاورزی توصیه می‌شود. در پژوهش حاضر، آزمایشی گلدانی به‌صورت فاکتوریل بر پایه طرح کاملاً تصادفی با دو فاکتور و پنج تکرار در سال زراعی 1397-1396 انجام شد. فاکتور اول، غلظت‌های مختلف نانوکود در پنج سطح (صفر، یک، دو، سه و چهار گرم در لیتر) و فاکتور دوم شامل دفعات محلول‌پاشی در دو سطح (هفت و 14 روز یک‌بار) بود. نتایج به‌دست آمده نشان داد که در دفعات محلول‌پاشی هفت روز یک‌بار یا 14 روز یک‌بار، غلظت دو گرم در لیتر نانوکود منجر به افزایش ارتفاع بوته (30/30 و 10/29 سانتی‌متر) گردید. عملکرد ماده خشک (86/3 گرم در بوته) و مقدار فلاون و فلاونول (18/4 میلی‌گرم کوئرستین بر گرم وزن خشک) را می‌توان با استفاده از غلظت سه گرم در لیتر نانوکود و با دفعات محلول‌پاشی هفت روز یک‌بار افزایش داد. در محلول‌پاشی 14 روز یک‌بار، کاربرد غلظت‌های یک و چهار گرم در لیتر نانوکود منجر به افزایش مقدار کلروفیل کل شد. در ارتباط با فعالیت آنتی‌اکسیدانی، در غلظت‌های بالاتر از یک گرم در لیتر نانوکود افزایش نشان داده‌ شد (29/64 تا 21/80 درصد). غلظت‌های سه و دو گرم در لیتر نانوکود، به‌ترتیب با کاربرد هفت روز و 14 روز یک‌بار بیشترین مقدار ترکیبات فنولی کل را نتیجه داد. به‌طور کلی، نتایج نشان‌دهنده تأثیر مثبت نانوکود کلات کامل بر ویژگی‌های مورفولوژیکی و بیوشیمیایی مرزه تابستانه بود.


عنوان مقاله [English]

Morphological and Biochemical Responses of Summer Savory (Satureja hortensis L.) to Chelated Plus Nano Fertilizer Application

نویسندگان [English]

  • Askar Ghani
  • Saeideh Mohtashami
  • Salma Jamalian
Assistant Professor of Horticultural Science, Department of Horticultural Science, Faculty of Agriculture, Jahrom University, Jahrom, Iran
چکیده [English]

Improper utilization of chemical fertilizers has been conducted destructive and irrecoverable effects on soil structure and nutrient elements balance. Nowadays, therefore, Nano-fertilizers application toward maintaining agroecosystem, is recommended. At the present study, a factorial experiment based on a completely randomized design with two factors and five replications in pots conditions during 2017-2018 years was conducted. The first factor included Nano fertilizer concentrations at five levels (0, 1, 2, 3 and 4 g.L-1) and the second factor was foliar application intervals at two levels (seven and 14 days). The results showed that seven or 14 days’ interval of 2 g.L-1 Nano-fertilizer application results in increase in plant height (30.3 and 29.1 cm respectively). Dry matter yield (3.86 g.plant-1) and flavone and flavonol content (4.18 mg quercetin.g-1 dry weight) could be enhanced by using 7 days’ interval of 3 g.L-1 Nano-fertilizer. Application of fourteen days’ interval of 1 and 4 g.L-1 Nano fertilizer induced increase in total chlorophyll content. In relation to antioxidant activity, after using more than 1 g.L-1 Nano-fertilizer concentration an increase has been shown (64.29-80.21%). Nano-fertilizer at 3 and 2 g.L-1 concentrations after using seven and 14 days’ intervals respectively, showed highest level of total phenol content. Flavonoid contents exhibited stronger enhancement by using lower concentrations of Nano-fertilizer. Generally, the results showed positive effects of chelated plus Nano fertilizer on morphological and biochemical traits of summer savory.

کلیدواژه‌ها [English]

  • Antioxidant Activity
  • Flavonoids
  • Summer savory
  • Total phenolic compounds
  • Yield
-          Abd Ell-All, A. M. (2019). Nano-Fertilizer application to increase growth and yield of Sweet Pepper under potassium levels. Agricultural Research and Technology, 19(4), 145-156.
-          Abo-sedera, F., Shams, A. S., Mohamed, M. H. M. & Hamoda, A. H. M. (2016). Effect of organic fertilizer and foliar spray with some safety compounds on growth and productivity of snap bean. Annals of Agricultural Science Moshtohor, 54(1): 105-118.
-          Adisa, I. O., Pullagurala, V. L. R., Peralta-Videa, J. R., Dimkpa, C. O., Elmer, W. H., Gardea-Torresdey, J. L. & White, J. C. (2019). Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environmental Science: Nano, 6(7), 2002-2030.
-          Ajirloo, A. R., Shaaban, M. & Motlagh, Z. R. (2015). Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of tomato (Lycopersicon esculentum L.). International Journal of Advanced Biological and Biomedical Research, 3(1), 138-143.
-          Albanese, A., Tang, P. S. & Chan, W. C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1-16.
-          Alizadeh, A., Khoshkhui, M., Javidnia, K., Firuzi, O., Tafazoli, E. & Khalighi, A. (2010). Effects of fertilizer on yield, essential oil composition, total phenolic content and antioxidant activity in Satureja hortensis L. (Lamiaceae) cultivated in Iran. Journal of Medicinal Plants Research, 4(1), 33-40.
-          Alloway, D. (2008). Zinc in soils and crop nutrition. Published by IZA and IFA Brussels, Belgium and Paris, France.
-          Amirnia, R., Bayat, M. & Tajbakhsh, M. (2014). Effects of nano fertilizer application and maternal corm weight on flowering at some saffron (Crocus sativus L.) ecotypes. Turkish Journal of Field Crops, 19(2), 158-168.
-          Benzon, H. R. L., Rubenecia, M. R. U., Ultra Jr, V. U. & Lee, S. C. (2015). Nano-fertilizer affects the growth, development, and chemical properties of rice. International Journal of Agronomy and Agricultural Research, 7(1), 105-117.
-          Burman, U., Saini, M. & Kumar, P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry, 95(4), 605-612.
-          Campos, M. R. S., Gomez, K. R., Ordo, Y. M. & Ancona, D. B. (2013). Polyphenols, ascorbic acid and carotenoids contents and antioxidant properties of habanero pepper (Capsicum chinense) fruit. Food and Nutrition Sciences, 4, 47-54.
-          Ditta, A & Arshad, M. (2016). Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Review, 5(2): 209-229.
-          El Habbasha, E. S. F. & El Salam, M. A. (2009). Response of two canola varieties (Brassica napus L.) to nitrogen fertilizer levels and zinc foliar application. International Journal of Academic Research, 2, 60-66.
-          El-Kereti, M., A El-feky, S., S Khater, M., A Osman, Y. & A El-sherbini, E. S. (2013). ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Patents on Food, Nutrition & Agriculture, 5(3), 169-181.
-          Garcia-Lopez, J. I., Nino-Medina, G., Olivares-Saenz, E., Lira-Saldivar, R. H., Barriga-Castro, E. D., Vázquez-Alvarado, R., Rodriguez-Salinas, P. A. & Zavala-Garcia, F. (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants, 8(8), 254-266.
-          Ha, N. M. C., Nguyen, T. H., Wang, S. L. & Nguyen, A. D. (2019). Preparation of NPK nanofertilizer based on chitosan nanoparticles and its effect on biophysical characteristics and growth of coffee in greenhouse. Research on Chemical Intermediates, 45(1), 51-63.
-          Hadian, J., Tabatabaei, S. M. F., Naghavi, M. R., Jamzad, Z. & Ramak-Masoumi, T. (2008). Genetic diversity of Iranian accessions of Satureja hortensis L. based on horticultural traits and RAPD markers. Scientia Horticulturae, 115(2), 196-202.
-          Hansch, R. & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Pant Bology, 12(3), 259-266.
-          Haverkamp, R. G. & Marshall, A. T. (2009). The mechanism of metal nanoparticle formation in plants: limits on accumulation. Journal of Nanoparticle Research, 11(6), 1453-1463.
-          Kubavat, D., Trivedi, K., Vaghela, P., Prasad, K., Vijay Anand, G. K., Trivedi, H., Patidar, R., Chaudhari, J., Andhariya, B. & Ghosh, A. (2020). Characterization of a chitosan‐based sustained release nanofertilizer formulation used as a soil conditioner while simultaneously improving biomass production of Zea mays L. Land Degradation & Development, 31(17), 2734-2746.
-          Lafmejani, Z. N., Jafari, A. A., Moradi, P. & Moghadam, A. L. (2018). Impact of foliar application of copper sulphate and copper nanoparticles on some morpho-physiological traits and essential oil composition of peppermint (Mentha piperita L.). Herba Polonica, 64(2), 13-24.
-          Marzouk, N. M., Abd-Alrahman, H. A., EL-Tanahy, A. M. M. & Mahmoud, S. H. (2019). Impact of foliar spraying of nano micronutrient fertilizers on the growth, yield, physical quality, and nutritional value of two snap bean cultivars in sandy soils. Bulletin of the National Research Centre, 43(1), 1-9.
-          Mazumder, J. A., Khan, E., Perwez, M., Gupta, M., Kumar, S., Raza, K. & Sardar, M. (2020). Exposure of biosynthesized nanoscale ZnO to Brassica juncea crop plant: Morphological, biochemical and molecular aspects. Scientific Reports, 10(1), 1-13.
-          Menichini, F., Tundis, R., Bonesi, M., Loizzo, M. R., Conforti, F., Statti, G., De Cindio, B., Houghton, P. J. & Menichini, F. (2009). The influence of fruit ripening on the phytochemical content and biological activity of Capsicum chinense Jacq. cv Habanero. Food Chemistry, 114(2), 553-560.
-          Merghany, M. M., Shahein, M. M., Sliem, M. A., Abdelgawad, K. F. & Radwan, A. F. (2019). Effect of nano-fertilizers on cucumber plant growth, fruit yield and it’s quality. Plant Archives, 19(2), 165-172.
-          Miranda-Villagómez, E., Trejo-Tellez, L. I., Gomez-Merino, F. C., Sandoval-Villa, M., Sanchez-Garcia, P. & Aguilar-Mendez, M. A. (2019). Nanophosphorus Fertilizer Stimulates Growth and Photosynthetic Activity and Improves P Status in Rice. Journal of Nanomaterials, doi.org/10.1155/2019/5368027.
-          Mohammad Ghasemi, V., Siavash Moghaddam, S., Rahimi, A., Pourakbar, L. & Popovic-Djordjevic, J. (2020). Winter Cultivation and Nano Fertilizers Improve Yield Components and Antioxidant Traits of Dragon’s Head (Lallemantia iberica (MB) Fischer & Meyer). Plants, 9(2), 252-260.
-          Mohtashami, S., Rowshan, V., Tabrizi, L., Babalar, M., & Ghani, A. (2018). Summer savory (Satureja hortensis L.) essential oil constituent oscillation at different storage conditions. Industrial Crops and Products, 111, 226-231.
-          Mozaffarian, V. (2017). Identification of Medicinal and Aromatic Plants of Iran (third ed). Farhang Moaser Publishers, Tehran. (In Farsi)
-          Oke, F., Aslim, B., Ozturk, S. & Altundag, S. (2009). Essential oil composition, antimicrobial and antioxidant activities of Satureja cuneifolia Ten. Food Chemistry, 112(4), 874-879.
-          Ostadi, A., Javanmard, A., Machiani, M. A., Morshedloo, M. R., Nouraein, M., Rasouli, F., & Maggi, F. (2020). Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Industrial Crops and Products, 148, 112290.
-          Parks, S. E., Irving, D. E. & Milham, P. J. (2012). A critical evaluation of on-farm rapid tests for measuring nitrate in leafy vegetables. Scientia Horticulturae, 134, 1-6.
-          Peyvandi, M., Parande, H. & Mirza, M. (2011). Comparison of nano Fe Chelate with Fe chelate effect on growth parameters and antioxidant enzymes activity of Ocimum basilicum. New Cellular and Molecular Biotechnology Journal, 1(4), 89-98. (In Farsi)
-          Ponce-Garcia, C. O., Soto-Parra, J. M., Sanchez, E., Munoz-Marquez, E., Pina-Ramirez, F. J., Flores-Cordova, M. A., Perez-Leal, R. & Yanez Munoz, R. M. (2019). Efficiency of nanoparticle, sulfate, and zinc-chelate use on biomass, yield, and nitrogen assimilation in green beans. Agronomy, 9(3), 128-135.
-          Popova, M., Bankova, V., Butovska, D., Petkov, V., Nikolova‐Damyanova, B., Sabatini, A. G. & Bogdanov, S. (2004). Validated methods for the quantification of biologically active constituents of poplar‐type propolis. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 15(4), 235-240.
-          Rezaei, M. & Abbasi, H. (2014). Foliar application of nanochelate and non-nanochelate of zinc on plant resistance physiological processes in cotton (Gossipium hirsutum L.). Iranian Journal of Plant Physiology, 4(4), 1137-1144. (In Farsi)
-          Shebl, A., Hassan, A. A., Salama, D. M., El-Aziz, A. & Abd Elwahed, M. S. (2019). Green synthesis of nanofertilizers and their application as a foliar for Cucurbita pepo L. Journal of Nanomaterials, doi.org/10.1155/2019/3476347.
-          Sukran, D. E. R. E., Gues, T. & Sivaci, R. (1998). Spectrophotometric determination of chlorophyll-A, B and total carotenoid contents of some algae species using different solvents. Turkish Journal of Botany, 22(1), 13-18.
-          Vafa, Z. N., Sirousmehr, A. R., Ghanbari, A., Khammari, I. & Falahi, N. (2015). Effects of nano zinc and humic acid on quantitative and qualitative characteristics of savory (Satureja hortensis L.). Journal of Bioscience and Biotechnology, 4(6), 56-67.  
-          Wan, A., Gao, Q. & Li, H. (2010). Effects of molecular weight and degree of acetylation on the release of nitric oxide from chitosan‐nitric oxide adducts. Journal of Applied Polymer Science, 117(4), 2183-2188.
-          Wojdyło, A., Oszmianski, J. & Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry, 105(3), 940-949.
-          Yuvaraj, M. & Subramanian, K. S. (2014). Effect of zinc based nano fertilizer on physiological parameter. Trends in Biosciences, 7(17), 2561-2563.