کارایی کاربرد تلفیقی هرس شاخه فرعی و کود زیستی بر رنگیزه‌های فتوسنتزی برگ و عملکرد کمی و کیفی میوه خیار گلخانه‌ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد علوم باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 استادیار گروه علوم باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 دانشیار گروه علوم باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

4 دانشجوی دکتری علوم باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

10.22034/iuvs.2021.524047.1144

چکیده

هدف این پژوهش بررسی تأثیر هرس و کاربرد کود زیستی بیوهلث (Biohealth) بر کیفیت و کمیت میوه خیار گلخانه‌ای رقم سلطان می‌باشد. بدین منظور آزمایشی به‌صورت فاکتوریل دو عاملی (کود و هرس) بر پایه طرح بلوک‌های کامل تصادفی با سه تکرار تحت شرایط گلخانه‌ای در گرگان در سال 1398 اجرا گردید. عامل‌های آزمایش شامل نوع هرس روی شاخه‌های جانبی در چهار سطح (نگهداری یک گره، دو گره، سه گره و حذف تمامی شاخه‌های فرعی) و کود زیستی در دو سطح (کاربرد کود زیستی بیوهلث و عدم کاربرد) بودند. نتایج نشان داد بیشترین فعالیت آنتی‌اکسیدان میوه با 37/66 درصد در هرس کامل و بدون استفاده از کود مشاهده شد. بالاترین میزان گلوکز میوه (96/102 میلی‌گرم در گرم وزن تر) در تیمار هرس گره اول و بدون استفاده از کود به‌دست آمد. بیشترین میزان قند کل محلول میوه (02/44 میلی‌گرم در گرم وزن خشک) و کلروفیل a برگ وسط بوته (98/0 میلی‌گرم در گرم وزن تر) در هرس کامل و بدون استفاده از کود حاصل شد. بیشترین تعداد میوه (82 عدد) در هرس گره سوم و کمترین تعداد میوه (52 عدد) در هرس کامل به‌دست آمد. یافته‌های این آزمایش نشان داد که افزایش تعداد میوه در هرس گره سوم، سبب انتقال بیشتر مواد فتوسنتزی به میوه‌ها می‌شود. به‌عنوان یک توصیه، اگر هدف از کشت خیار گلخانه‌ای تولید برای مدت معین و کوتاه و در عین‌حال حفظ کیفیت میوه باشد، هرس گره سوم سودمند است؛ اما هنگامی که کشت بلندمدت مدنظر باشد، هرس گره اول و دوم مناسب می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Combined Application of Branch Pruning and Biofertilizer on Leaf Photosynthetic Pigments and Fruit Quantity and Quality of Greenhouse Cucumber

نویسندگان [English]

  • Maryam Rostaghi 1
  • Seyyed Javad Mousavizadeh 2
  • Kambiz Mashayekhi 3
  • Saheb Sangdoveini 4
1 M.Sc. Student, Department of Horticultural Sciences, Gorgan University of agricultural sciences and natural resources, Gorgan, Iran
2 Assistance Professor, Department of Horticultural Sciences, Gorgan university of agricultural sciences and natural resources, Gorgan, Iran
3 Associated Professor, Department of Horticultural Sciences, Gorgan University of agricultural sciences and natural resources, Gorgan, Iran
4 Ph.D. Student, Department of Horticultural Science, Gorgan University of agricultural science and natural resources, Gorgan, Iran
چکیده [English]

The purpose of this study was to investigate the effect of pruning and application of biohealth biological fertilizer on the quality and quantity of greenhouse cucumber fruit cv. Soltan. For this purpose, a two-factor factorial experiment (fertilizer and pruning) was performed based on a randomized complete block design with three replications under greenhouse conditions in Gorgan in 2019. Experimental factors included the type of pruning on lateral branches at four levels (maintenance of one node on the lateral branch, two nodes, three nodes and removal of all branches) and biofertilizer at two levels (application of biohlt biofertilizer and non-application). The results showed the highest amount of fruit antioxidants seen in complete pruning-without fertilizer with 66.37%. The highest fruit glucose obtained in the first node pruning without fertilizer with 102.96 mg g-1FW-1. The highest amount of total sugar and chlorophyll a in the middle leaf of the plant recorded in complete pruning without fertilizer treatment with 44.02 mg g-1DW-1 and 0.98 mg g-1FW-1, respectively. The highest number of fruits obtained in the third node pruning (82 n) and the lowest number of fruits obtained in complete pruning (52 n). The results of this experiment showed that greenhouse cucumber maintains the balance of vegetative and reproductive growth according to the type of pruning. Increasing the number of fruits in the pruning of the third node causes more transfer of photosynthetic materials to the fruits. As a recommendation, if the purpose of greenhouse cucumber cultivation is to produce for a short period of time and at the same time maintain fruit quality, pruning the third node is beneficial, but when long-term cultivation is considered, pruning the first and second nodes is appropriate.

کلیدواژه‌ها [English]

  • fruit sugar
  • Latral branch
  • node
  • Pruning
  • Yield number
-           Ahmadpour, R., Salimi, A., Armand, N. & Hosseinzadeh, S. R. (2019). The effects of Ascophyllum nodosum extract on the stimulation of germination indices in chickpea (Cicer arietinum) under drought stress. Nova Biologica Reperta, 6(2), 206-216.‏
-           Al-Ghamdi, A. A. & Elansary, H. O. (2018). Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation. Plant Physiology and Biochemistry, 129, 273-284.‏
-           An, J., Zhang, M. & Zhan, Z. (2007). Effect of packaging film on the quality of ‘Chaoyang’honey peach fruit in modified atmosphere packages. Packaging Technology and Science: An International Journal, 20(1), 71-76.‏
-           Ashwell, G. (1957). Methods in enzymology. Academic Press Inc., New York.
-           Ayyasizadeh, S., Ansari, N. A. & Dehkordi, F. S. (2018). Effect of pruning and cultivar on growth, yield and fruit quality of greenhouse cucumber under Ahvaz conditions. Journal of Science and Technology of Greenhouse Culture, 8(4), 91-102.
-           Barnes, J. D., Balaguer, L., Manrique, E., Elvira, S. & Davison, A. W. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environmental and Experimental Botany, 32(2), 85-100.‏
-           Brenfeld, P. (1995). Method in enzymology. Academic press, New York, Vol 1.  
-           Caffagni, D. E., Camargo, E., Casali, C. A., Lombardi, A. T. & Lima, M. I. S. (2015). Coupling microalgal cultures with hydroponics: Prospection for clean biotechnology processes. Journal of Algal Biomass, 6, 88-94.‏
-           Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178 -182.
-           Fahimi, F., Souri, M. K. & Yaghobi, F. (2016). Growth and development of greenhouse cucumber under foliar application of Biomin and Humifolin fertilizers in comparison to their soil application and NPK. Journal of Science and Technology of Greenhouse Culture, 7(25), 143-152.‏
-           Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S. & Patra, J. K. (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206, 131-140.
-           Heydari, N., Delshad, M., Babalar, M. & Salehi, R. (2020). Growth and yield of greenhouse cucumber as influenced by nutrient solution EC and‎ number of flowers per node‎. Iranian Journal of Horticultural Science, 51(3), 719-728.‏
-           Keutgen, A. J. & Pawelzik, E. (2009). Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environmental and Experimental Botany, 65(2), 170-176.‏
-           Klaring, H. P., Hauschild, I. & Heibner, A. (2014). Fruit removal increases root-zone respiration in cucumber. Annals of Botany, 114, 1735-1745.
-           Khezri, M. (2017). Effect of biofilm by plant probiotic rhizobacteria on root colonization and growth of wheat. Biological Control of Pest and Plant Disease, 6(1), 93-102. (In Farsi)
-           Kumar, G. & Sahoo, D. (2011). Effect of seaweed liquid extract on growth and yield of Triticum aestivum var. Pusa Gold. Journal of Applied Phycology, 23(2), 251-255.‏
-           Mansori, M., Farouk, I. A., Hsissou, D. & El Kaoua, M. (2019). Seaweed extract treatment enhances vegetative growth and antioxidant parameters in water stressed Salvia officinalis L. Journal of Materials and Environmental Sciences, 10(8), 756-66.‏
-           Mashayekhi, K. & Shomali, A. (2018). Botany, physiology and culture of vegetable. Gorgan University of Agricultural Sciences & Natural Resources Press. (In Farsi)
-           McCready, R. M., Guggolz, J., Silviera, V. & Owens, H. S. (1950). Determination of starch and amylose in vegetables. Analytical Chemistry, 22(9), 1156-1158.‏
-           McDonald, S., Prenzler, P. D., Antolovich, M. & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73(1), 73-84.‏
-           Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428.‏
-           Mir, A. A., Sadat, M. A., Amin, M. R. & Islam, M. N. (2019). Pruning: a mechanical stress inducing method to improve growth and yield of Bangladeshi local cucumber variety “Baromashi”. International Journal of Business Social and Scientific Research, 7(4), 31-35.‏
-           Mora, V., Bacaicoa, E., Zamarreno, A. M., Aguirre, E., Garnica, M., Fuentes, M. & Garcia-Mina, J. M. (2010). Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. Journal of Plant Physiology, 167(8), 633-642.‏
-           Nemati, S. H., Esmaili, A. A., Davarynejad, G. & Farsi, M. (2011). The Effect of Pruning and Spacing on Yield Related Traits of Three Greenhouse Cucumber Cultivars. Journal of Horticultural Science, 25(1), 9-17.
-           Premalatha, M. G. S., Wahundeniya, K. B., Weerakkody, W. A. P. & Wicramathunga, C. K. (2006). Plant training and spatial arrangement for yield improvements in greenhouse cucumber (Cucumis sativus L.) varieties.‏ Tropical Agricultural Reaserch, 7, 346-357.
-           Rohani, S. N., Neamati, S., Moghadam, M. & Ardakanian, V. (2017). The role of humic acid on improving bio-chemical properties, anthocyanin and chlorophyll pigments contents in different radish varieties under salt stress. Journal of Plant Process and Function, 6(21), 377-388. (In Farsi)
-           Sarhan, T.Z., & Ismael, S.F. (2014). Effect of low temperature and seaweed extracts on flowering and yield of two cucumber cultivars (Cucumis sativus). International Journal of Agricultural and Food Research, 3(1), 41-54.
-           Shirahmadi, S., Barzegar, T. & Ghahremani, Z. (2017). Effect of Two Training Methods on Growth Indices and Yield of Greenhouse Cucumber (Cucumis sativus), cv. Gohar Plant Production Technology, 9(2), 117-127.
-           Singh, V., Singh, P. N., Yadav, R. L., Awasthi, S. K., Joshi, B. B., Singh, R. K. & Duttamajumder, S. K. (2010). Increasing the efficacy of Trichoderma harzianum for nutrient uptake and control of red rot in sugarcane. Journal of Horticulture and Forestry, 2(4), 66-71.‏
-           Van Handel, E. (1968). Direct microdetermination of sucrose. Analytical Biochemistry, 22(2), 280-283.‏
-           Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L. & Lorito, M. (2008). Trichoderma plant pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10.‏
-           Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology, 64(1), 88-93.‏
-           Zhang, X. & Ervin, E. H. (2004). Cytokinin‐containing seaweed and humic acid extracts associated with creeping bentgrass leaf cytokinins and drought resistance. Crop Science, 44(5), 1737-1745.‏
-           Zhang, X. & Ervin, E. H. (2008). Impact of seaweed extract‐based cytokinins and zeatin riboside on creeping bentgrass heat tolerance. Crop Science, 48(1), 364-370.‏