بررسی اثر ملاتونین بر خصوصیات رشد، فیزیولوژی و بیوشیمیایی گیاه استویا تحت شرایط تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استاد گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 استادیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

4 ‌دکتری علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

5 دانشجوی کارشناسی ارشد علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

10.22034/iuvs.2021.534020.1170

چکیده

به‌منظور بررسی اثر ملاتونین بر صفات مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی گیاه استویا تحت شرایط تنش شوری، آزمایشی گلدانی به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه پژوهشی دانشکده کشاورزی دانشگاه محقق اردبیلی در سال 1398 اجرا شد. تیمارهای آزمایش شامل تنش شوری در سه سطح (صفر، 50 و 100 میلی‌مولار کلرید سدیم) و محلول‌پاشی ملاتونین در سه سطح (صفر، 75، 150 میکرومولار) بودند. نتایج نشان داد که با افزایش میزان تنش شوری صفات رویشی گیاه از قبیل طول ساقه، وزن خشک بوته و وزن خشک ساقه کاهش معنی‌داری نشان دادند. محلول‌پاشی ملاتونین تحت شرایط تنش شدید شوری، سبب بهبود این صفات نسبت به عدم محلول‌پاشی گردید. بیشترین میزان کلروفیل a، کلروفیل کل و کاروتنوئید به‌ترتیب به‌میزان 64/6 و 46/7 و 24/6 میلی‌گرم در گرم وزن تر برگ در گیاهان تحت شرایط عدم تنش شوری و محلول‌پاشی 150 میکرومولار ملاتونین به‌دست آمد. همچنین بیشترین مقدار رطوبت نسبی در شرایط عدم تنش شوری و کاربرد 150 میکرومولار ملاتونین حاصل شد. بیشترین میزان فعالیت آنتی‌اکسیدانی (80/2 درصد)، پراکسیداز (419/0 واحد در میلی‌گرم پروتئین در دقیقه)، پرولین (49/0 میکرومول در گرم وزن خشک) و کربوهیدرات کل (65/92 میلی‌گرم درگرم وزن تر) تحت تنش شوری 100 میلی‌مولار و کاربرد 150 میکرومولار ملاتونین به‌دست آمد. درحالی‌که بیشترین میزان فعالیت آنزیم کاتالاز (57/9 واحد در میلی‌گرم پروتئین در دقیقه) در شوری 100 میلی‌مولار و 75 میکرومولار ملاتونین مشاهده گردید. بالاترین میزان نشت الکترولیت برگ نیز در شوری 100 میلی‌مولار و عدم کاربرد ملاتونین مشاهده شد. به‌نظر می‌رسد که مصرف ملاتونین در شرایط تنش شوری می‌تواند باعث افزایش رشد گیاه و بهبود خصوصیات فیزیولوژیکی و بیوشیمیایی گیاه استویا شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Melatonin Tretment on Growth and Physiology and Biochemical of Stevia rebaudiana Berton under Salt Stress Conditions

نویسندگان [English]

  • Zahra Normohammadi 1
  • Behrouz Ismailpour 2
  • Rasoul Azarmi 3
  • morteza shiekhalipour 4
  • Esmaeil Chamani 2
  • Roghayeh shahbazi yajlo 5
1 M.Sc. Graduate, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 Assistant Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
4 Ph.D. Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
5 M.Sc. Student, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
چکیده [English]

Introduction: Salinity is one of the most important environmental stresses that reduces the growth, development and production of plants around the world. Stevia is a perennial herbaceous plant of the Asteraceae family. Stevia has a strong sweetening effect due to stoviol glycosides. Since the germination of stevia is poor and the seedling growth rate is slow and slow in the early stages, its evaluation to salinity stress is of special importance. Due to the increasing demand for the use of cultivars with better relative tolerance to non-living environmental stresses is increasing day by day. Also, the desirable properties of stevia for the health of the community and its sweetening and antidiabetic properties were selected for study; Due to the different roles of melatonin in the plant, this study was used to investigate its effect on the growth, physiological, morphological and biochemical traits of stevia under salinity stress.
Materials and Methods: In order to investigate effects of Melatonin application on Growth and Physiology and Biochemical in salinity stress in Stevia herb, a pot factorial experiment based on completely randomized design with three replications was conducted in the research greenhouse of Agriculture Faculty, Mohaghegh University of Ardebily. Treatments were consisted of salinity stress at three levels (0, 50 and 100 mM) as the first factor and the application Melatonin of at three levels (0, 75, 150Mm) as the second factor. In this experiment, morphological traits including stem length, plant dry weight, stem dry weight and physiological characteristics such as photosynthetic pigment concentration, proline, ion leakage, relative leaf moisture content, soluble sugar content, catalase, peroxidase and antioxidant activity were investigated
Results and Discussion: Vegetative traits such as Stem length, dry weight Plant and dry weight Stem, were significantly decreased with increasing salinity stress. Foliar spraying Melatonin at high levels of salinity stress improved these traits compared to control plants. Also, the highest chlorophyll a, Total chlorphyll and Carotenoids content was obtained in control plants (non-salinity stress) with Foliar spraying Melatonin 150Mm which were 6.64 and 7.46 and 6.24mg/g.FW, respectively. The highest antioxidant activity(2.80%), total peroxidaz 0.419Mg/pro/min) and proline (0.49 mg/g.DW) and Carbohidrat(92.65 mg/g.FW) was observed in 100 mM salinity stress treatment and application 150 Mm Melatonin. But Katalaz (9.57 Mg/pro/min) in 100 mM salinity stress treatment and application 75Mm Melatonin was obtained. The highest relative water content (RWC) was obtained under non salinity stress conditions (control) and application of 150 Mm Melatonin, Then salinity stress cause decrease this quality but application Melatonin cause improve this quality. Maximum level electrolyt leakage leaves also was observed in 100 mM salinity stress treatment and not application Melatonin. Decreased vegetative growth due to salinity treatment is probably due to reduced photosynthetic levels as well as reduced photosynthetic pigments such as chlorophyll a and b, net carbon uptake, stomatal conduction and pore closure due to salinity stress Salinity and melatonin stress significantly increased the antioxidant activity of stevia leaves. According to the results of this study, it can be said that stevia is a plant sensitive to salinity stress. As increasing salinity stress levels, a significant decrease in growth indices and photosynthetic pigments is seen. The use of melatonin improved these traits under salinity stress. Increasing the amount of melatonin compensated for the damage to the plant. As the biochemical and physiological properties of the plant such as antioxidant activity, the amount of proline, total carbohydrates improved and ultimately increased plant growth; Therefore, it can be stated that melatonin consumption can increase the morphological, physiological and biochemical traits of stevia under salinity stress. The results of this study showed that salinity reduces and impairs plant growth and the use of melatonin can reduce the destructive effects of salinity to some extent and increase plant tolerance to salinity.
Conclusions: In general, it could be concluded that using of Melatonin under salt stress conditions can increase plant growth and improve Stevia Physiology and biochemical traits.

کلیدواژه‌ها [English]

  • Saltwater
  • antioxidants
  • Stevia
  • Photosynthetic pigments
  • Growth indices
  • Alla, M. M. N., Younis, M. E., El-Shihaby, O. A., & El-Bastawisy, Z. M. (2002). Kinetin regulation of growth and secondary metabolism in waterlogging and salinity treated Vigna sinensis and Zea mays. Acta Physiologiae Plantarum, 24(1), 19-27.‏
  • Archangi, A., Khodambashi, M. & Mohammadkhani, A. (2012). The effect of salt stress on morphological characteristics and Na+, K+ and Ca+ ion contents in medicinal plant fenugreek (Trigonella foenum graecum) under hydroponic culture. Journal of Science and Technology of Greenhouse Culture, 3(10), 33-40. (In Farsi)
  • Arnao, M. B. (2014). Phytomelatonin: discovery, content, and role in plants. Advances in Botany, 2014, 1-11.
  • Arnao, M. B. & Hernandez-Ruiz, J. (2014). Melatonin: plant growth regulator and/or biostimulator during stress?. Trends in Plant Science, 19(12), 789-797.‏
  • Ashraf, M. & McNeilly, T. (1990). Responses of four Brassica species to sodium chloride. Environmental and Experimental Botany, 30(4), 475-487.‏
  • Barrs, H. D. & Weatherley, P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences, 15(3), 413-428.‏
  • Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.‏
  • Calvo, J. R., Gonzalez‐Yanes, C. & Maldonado, M. D. (2013). The role of melatonin in the cells of the innate immunity: a review. Journal of Pineal Research, 55(2), 103-120.‏
  • Chen, Q., Qi, W. B., Reiter, R. J., Wei, W. & Wang, B. M. (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology, 166(3), 324-328.‏
  • Demiral, M. A., Aydin, M. & Yorulmaz, A. (2005). Effect of salinity on growth chemical composition and antioxidative enzyme activity of two malting barley (Hordeum vulgare) cultivars. Turkish Journal of Biology, 29(2), 117-123.‏
  • Dhindsa, R. H., Plumb-Dhindsa, R. & Thorpe, T. A. (1981). Leaf senescence correlated with increased level of membrane permeability, lipid peroxidation and decreased level of SOD and CAT. Journal of Experimental Botany, 32, 93-101.
  • Dongxiao, L. I., Zhang, D., Hongguang, W. A. N. G., Yanming, L. I. & Ruiqi, L. I. (2017). Physiological response of plants to polyethylene glycol (PEG-6000) by exogenous melatonin application in wheat. Zemdirbyste-Agriculture, 104(3), 219-228.
  • Drazkiewicz, M. (1994). Chlorophyllase: occurrence, functions, mechanism of action, effects of external and internal factors. Photosynthetica, 30, 321-331.
  • Galano, A., Tan, D. X. & Reiter, R. J. (2011). Melatonin as a natural ally against oxidative stress: a physicochemical examination. Journal of Pineal Research, 51(1), 1-16.‏
  • Gorham, J. (1995). Mechanism of salt tolerance of halophytes. Plant and Biology, 28, 89-121.
  • Hardeland, R., Cardinali, D. P., Srinivasan, V., Spence, D. W., Brown, G. M. & Pandi-Perumal, S. R. (2011). Melatonin-A pleiotropic, orchestrating regulator molecule. Progress in Neurobiology, 93(3), 350-384.‏
  • Hedge, J. E. & Hofreiter, B. T. (1962). In Carbohydrate Chemistry, 17 (Eds. Whistler R.L. and Be Miller, J.N.). Academic Press, New York.
  • Heidari, M. (2012). Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum) genotypes. African Journal of Biotechnology, 11(2), 379-384.‏
  • Hossein, M. A., Shamim Kabri, A. M., Jahan, T. A. & Hassan, M. N. (2008). Micropropagagation of Stevia Rebaudiana. International Journal of Sustainable Crop Production, 3, 1-90.
  • Inze, D. & Van Montagu, M. (1995). Oxidative stress in plants. Current opinion in Biotechnology, 6(2), 153-158.‏
  • Jiang, C., Cui, Q., Feng, K., Xu, D., Li, C. & Zheng, Q. (2016). Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta Physiologiae Plantarum, 38(4), 82.‏
  • Jiao, J., Ma, Y., Chen, S., Liu, C., Song, Y., Qin, Y. & Liu, Y. (2016). Melatonin-producing endophytic bacteria from grapevine roots promote the abiotic stress-induced production of endogenous melatonin in their hosts. Frontiers in Plant Science, 7.‏
  • Lemus-Mondaca, R., Vega-Galvez, A., Zura-Bravo, L. & Ah-Hen, K. (2012). Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review on the biochemical, nutritional and functional aspects. Food chemistry, 132(3), 1121-1132.‏
  • Li, C., Tan, D. X., Liang, D., Chang, C., Jia, D. & Ma, F. (2015). Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany, 66(3), 669-680.‏
  • Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa) cultivars differing in salinity resistance. Annals of Botany, 78(3), 389-398.‏
  • Maas, E. V. (1993). Plant growth response to salt stress. In Towards the rational use of high salinity tolerant plants (pp. 279-291). Springer, Dordrecht.‏
  • MacAdam, J. W., Nelson, C. J. & Sharp, R. E. (1992). Peroxidase activity in the leaf elongation zone of tall fescue: I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant Physiology, 99(3), 872-878.‏
  • Marcum, K. B. (1998). Cell membrane thermostability and whole‐plant heat tolerance of Kentucky bluegrass. Crop Science, 38(5), 1214-1218.‏
  • Moon, J. H. & Terao, J. (1998). Antioxidant activity of caffeic acid and dihydrocaffeic acid in lard and human low-density lipoprotein. Journal of Agricultural and Food Chemistry, 46(12), 5062-5065.‏
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250.‏
  • Netondo, G. W., Onyango, J. C. & Beck, E. (2004). Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Science, 44(3), 797-805.‏
  • Noctor, G. & Foyer, C. H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Biology, 49(1), 249-279.‏
  • Oueslati, S., Karray-Bouraoui, N., Attia, H., Rabhi, M., Ksouri, R. & Lachaal, M. (2010). Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiologiae Plantarum, 32(2), 289-296.‏
  • Parida, A. K. & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349.‏
  • Raeeszadeh, M. & Gharineh, M. H. (2014). Effects of gibberellic acid, nitric acid and moist chilling on seed germination Stevia. First International Congress and the Thirteenth National Congress of the Plant Breeding and Seed Science and Technology Conference. (In Farsi).
  • Rostami, G., Moghaddam, M., Narimani, R. & Mehdizadeh, L. (2018). The effect of different priming treatments on germination, morphophysiological, and biochemical indices and salt tolerance of basil (Ocimum basilicum cv. Keshkeni Levelou). Environmental Stresses in Crop Sciences, 11(4), 1107-1123.‏ (In Farsi)
  • Sahar, K., Amin, B. & Taher, N. M. (2011). The salicylic acid effect on the Salvia officianlis L. sugar, protein and proline contents under salinity (NaCl) stress. Journal of Stress Physiology & Biochemistry, 7(4).‏
  • Salami, M. R., Safarnezhad, A. & Hamidi, H. (2006). Effect of salinity stress on morphological characters of Cuminum cyminum and Valeriana officinalis. ‏ Journal of Research and Construction in Natural Resources, 72, 77-83. (In Farsi).
  • Sarani, S., Heidari, M., Glavi, M. & Siahsar, B. A. (2013). Effects of salinity and iron on growth, photosynthetic pigments and electrophoresis bands in two genus chamomile (Matricaria chamomilla and Anthemis nobilis L.). Iranian Journal of Medicinal and Aromatic Plants, 29(4), 732-746. (In Farsi)‏
  • Sevengor, S., Yasar, F., Kusvuran, S. & Ellialtioglu, S. (2011). The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Research, 6(21), 4920-4924.‏
  • Singh, S. D. & Rao, G. P. (2005). Stevia: The herbal sugar of 21 st century. Sugar Technology, 7(1), 17-24.‏
  • Steduto, P., Albrizio, R., Giorio, P. & Sorrentino, G. (2000). Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environmental and Experimental Botany, 44(3), 243-255.‏
  • Tan, D. X., Manchester, L. C., Helton, P, & Reiter, R. J. (2007). Phytoremediative capacity of plants enriched with melatonin. Plant Signaling & Behavior, 2(6), 514-516.‏
  • Tan, D. X., Korkmaz, A., Reiter, R. J. & Manchester, L. C. (2014). Ebola virus disease: potential use of melatonin as a treatment. Journal of Pineal Research, 57(4), 381-384.‏
  • Turk, H., Erdal, S., Genisel, M., Atici, O., Demir, Y. & Yanmis, D. (2014). The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regulation, 74(2), 139-152.‏
  • Wang, L. Y., Liu, J. L., Wang, W. X. & Sun, Y. (2016). Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica, 54(1), 19-27.‏
  • Zhang, N., Zhao, B., Zhang, H. J., Weeda, S., Yang, C., Yang, Z. C. & Guo, Y. D. (2013). Melatonin promotes water‐stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus). Journal of Pineal Research, 54(1), 15-23.‏
  • Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S. & Guo, Y. D. (2015). Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 66(3), 647-656.‏
  • Zhang, A., Han, D., Wang, Y., Mu, H., Zhang, T., Yan, X. & Pang, Q. (2018). Transcriptomic and proteomic feature of salt stress-regulated network in Jerusalem artichoke (Helianthus tuberosus) root based on de novo assembly sequencing analysis. Planta, 247(3), 715-732.‏