اثر کاربرد سطوح مختلف آهن و آرد سویا بر عملکرد و کیفیت قارچ دکمه‌ای (Agaricus bisporus)تحت تلقیح با باکتری Pseudomonas putida

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری باغبانی گرایش سبزیکاری، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 استاد گروه باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

3 استادیار گروه باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

4 استادیار گروه باغی و زراعی، دانشکده کشاورزی و علوم صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

10.22034/iuvs.2021.522337.1138

چکیده

القای تشکیل ساختار ته‌سنجاقی در قارچ دکمه‌ای Agaricus bisporus، با کاهش دما و غلظت دی‌اکسید کربن در حضور باکتری‌های موجود در خاک پوششی از جمله باکتری Pseudomonas putida انجام می‌شود. فعالیت این باکتری‌ها با بهبود کیفیت بستر از طریق غنی‌سازی با مواد آلی با غلظت نیتروژن بالا و عناصر ریزمغذی افزایش یافته که می‌تواند بر روی عملکرد قارچ دکمه‌ای نیز تأثیر بگذارند. بنابراین به‌منظور ارزیابی اثر غنی‌سازی خاک پوششی با مکمل های آرد سویا و آهن بر عملکرد و کیفیت قارچ خوراکی تحت تلقیح با P. putida، آزمایشی به‌صورت فاکتوریل با چهار تکرار در کارخانه تولید قارچ باران (دزفول) در سال 1398انجام شد. فاکتورهای مورد بررسی شامل کاربرد آهن در سه سطح (صفر، 250 و 500 میلی‌گرم در لیتر از منبع کلات آهن)، آرد سویا در سه سطح (صفر، 5/1 و سه درصد وزن تر کمپوست) و تلقیح باکتریایی در دو سطح (عدم تلقیح و تلقیح با P. putida) بود. نتایج نشان داد حداکثر عملکرد تازه قارچ (3/20 کیلوگرم در متر مربع)، تعداد قارچ (1545 قارچ در مترمربع)، کارایی زیستی (95 درصد)، و غلظت نیتروژن (5/25 درصد) تحت تأثیر تلقیح با باکتری P. putida توأم با کاربرد 250 میلی‌گرم در لیتر کلات آهن و 5/1 درصد آرد سویا به‌دست آمد. ضمن آن‌که بیشترین مقدار کربوهیدرات کل (48/6 درصد) با کاربرد توأم سه درصد آرد سویا و 500 میلی‌گرم در لیتر کلات آهن تولید شد. مطابق طبق نتایج به‌دست آمده غنی‌سازی خاک پوششی با آهن تأثیر قابل‌ملاحظه‌ای روی صفات کمی و کیفی قارچ نداشت؛ اما کاربرد آرد سویا به‌میزان 5/1 درصد به‌ویژه همراه با P. putida نقش مؤثرتری داشت. بنابراین برای افزایش تولید و بهبود صفات کیفی قارچ استفاده از آرد سویا به اندازه 5/1 درصد همراه با P. putida توصیه می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Application of Different Levels of Fe and Soybean Flour on Yield and Quality of Edible Mushroom (Agaricus bisporus) Inoculated with Pseudomonas putida

نویسندگان [English]

  • Fereshteh Makenali 1
  • Abdolkarim kashi 2
  • Reza Salehi Mohammadi 3
  • Ahmad Khalighi 4
1 Ph.D. Student, Department of Horticulture, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Professor of Horticultural Science Department, Faculty of Agriculture and Natural Resources, Tehran University, Karaj, Iran
3 Assistant Professor of Horticultural Science Department, Faculty of Agriculture and Natural Resources, Tehran University, Karaj, Iran
4 Assistant Professor of Horticulture and Agronomy Department, Faculty of Agriculture and Food Science, Science and Research Branch, Islamic Azad University,Tehran, Iran
چکیده [English]

Introduction. Edible mushrooms are the largest and the most valuable natural resource for producing of protein foods from low-cost materials in a short time, which have placed at the special rank in the world. Mushrooms are produced on compost materials including straw, poultry manure, gypsum, and other additives which its preparation for mushroom production is costly. Therefore, producers are looking for ways to reduce production costs by increasing bio-efficiency and producing more crops than compost. On the other hand, induction of the phase change from the vegetative to the reproductive stage in Agaricus bisporus is done by reducing the temperature and concentration of carbon dioxide in the presence of some bacteria including Pseudomonas putida. The activity of these bacteria is increased by improving the quality of the culture media through enrichment with the organic matter with a high concentration of nitrogen and micronutrients, which can also affect the performance of button mushrooms. Therefore, the present study was performed to evaluate the effect of enrichment of cover soil with soy flour and Fe (Fe) supplements on the yield and quality of edible mushrooms inoculated with P. putida.
Materials and methods. This study was conducted in a factorial randomized complete block design with four replications in the Baran company, Dezful, Khuzestan province in 2019. Experimental factors were including soy-flour at three levels (0, 1.5 and 3% fresh weight of compost), Fe at three levels (0, 250 and 500 mg l-1 of Fe-EDDHA containing 6% Fe), strain R156 of Pseudomonas putida was at two levels (85 ml kg-1 of compost and non- inoculation). To increase production efficiency and use the space, the experiment was performed by shelf method. The distance between the floors was 65 cm and the width of the floors was 140 cm. For mushroom cultivation, bag blocks were placed on the shelves (each bag was a rectangular cube measuring 40 x 60 cm and made of polyethylene, containing 17 kg of compost) and for each bag of compost, 170 g of seeds were considered. After distributing the compost on the shelves and cover soil (combined with Fe chelate and soy flour), with 4 cm diameter evenly was added and raffling operation was performed. At the time of Soiling, the compost temperature was 25 oC with pH = 7.5 and 70% relative humidity (RH) and cover soil had a pH=7.4 and 73% RH. After seeding until the induction the vegetative to the reproductive stage, RH of the culture room, and temperature were maintained at 90±5%, at 24 ±1 °C, respectively, and concentration of CO2 was about 6000-5000 ppm, under dark conditions. At the ripening stage, 1 m2 was harvested from the central part of each plot and the traits including dry weight, percentage of dry matter, cap diameter and height of the mushroom and yield were measured. Total carbohydrate was measured by Kochert method (1978), and nitrogen (N) concentration by Kjeldahl method and Fe by atomic absorption spectrometry determined. After recording the obtained results, the data were analyzed using SAS software version 9.2 and the mean comparison was done with the least significant difference (LSD) test at 5% level of probability.     Results. The results of analysis of variance showed that the interaction of B × F × S on pinhead formation, emergence time of primordia، fruit emergency،, primordium formation, cap diameter, mushroom yield, yield, dry weight, Fe concentration and Fe uptake; F × S interaction on number of mushrooms, moisture, content, nitrogen concentration; B × S interaction on mushroom length and B × F interaction on carbohydrate content was significant. The results of mean comparison showed that the longest emergence time of primordia (4 days) was obtained under bacterial inoculation without Fe-chelate application and there was no significant difference among other treatments and bacterial inoculation without soil enrichment with supplements showed the longest time (10 days) for pinhead formation and the shortest time (6 days) to start pinhead formation belonged to bacterial inoculation + 500 mg l-1 Fe-chelate + 1.5% soy flour. While the longest time for fruit emergence with average 29 days and the shortest time with an average of 21 days were obtained in treatments of  bacterial inoculation + 500 mg l-1 Fe chelate + 3% soy flour and bacterial inoculation + 1.5% soy flour without Fe-chelate. Bacterial inoculation increased the number of mushroom compared to the control, so that the highest number of fungi (1545) and maximum fresh mushroom yield (20.3 kg m-2) were observed in treatment of inoculation + 3% soy flour + without Fe chelate. In addition, soil enrichment with Fe-chelate and soy flour along with bacterial inoculation increased the yield of the mushroom, so that the highest yield in bacterial inoculation treatments and concurrent application of 250 mg l-1 Fe-chelate and 1.5% soy flour and bacterial inoculation + 500 mg l-1 of Fe-chelate + 1.5% of soy flour were obtained with an average of 20.73 and 20.77 kg m-2, respectively. The highest biological efficiency was in treatment of inoculation + 250 mg l-1 + Fe-chelate + 1.5% soy flour with an average of 96.99%. The highest amount of total carbohydrates was obtained in the control with average 22.1% and the highest concentration of Fe (88.03 mg kg-1) under inoculation + application of 3% soy flour + 500 mg l-1 of Fe-chelate and there was no significant difference with bacterial inoculation treatments and simultaneous application of 1.5% soy flour + 250 and 500 mg/l Fe chelate with an average of 85.96 and 87.93 and 88.03 mg kg-1, respectively.
Conclusion. The results of this study showed that the application of soy flour supplement at 1.5% compared to 3% had a more effective role in most of the measured mushroom traits, especially dry yield, wet yield, and biological efficiency. The positive effect of using 1.5% of soy flour increased by inoculation with P. putida so that their synergistic effect was clearly observed in most traits. However, the application of 500 mg l-1 Fe-chelate in most traits did not significant difference except total carbohydrates with the same treatments without the use of Fe. The maximum number of mushrooms, fresh yield, N concentration, and biological efficiency were obtained by inoculation of P. putida and simultaneous application of 1.5% soy flour. Therefore, to increase production and improve the quality traits of mushrooms, the use of soy flour at 1.5% with P. putida is recommended.

کلیدواژه‌ها [English]

  • Biological efficiency
  • Casing soil
  • Primordia emergence
  • Protein
  • Total carbohydrates
  • Anbarestani, L., Asoodar, M. & Heidari, M. (2020). Effects of wheat straw, leaf of date palm, bagasse and organic supplements on yield and quality of oyster mushroom. Journal of Vegetables Sciences, 3(2), 79-92.
  • Barros, L., Falcão, S., Baptista, P., Freire, C., Vilas-Boas, M., & Ferreira, I. C. (2008). Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chemistry, 111(1), 61-66.‏
  • Carrasco, J., Zied, D. C., Pardo, J. E., Preston, G. M. & Pardo-Gimenez, A. (2018). Supplementation in mushroom crops and its impact on yield and quality. AMB Express, 8(1), 1-9.‏
  • Chang, S. T. & Wasser, S. P. (2012). The role of culinary-medicinal mushrooms on human welfare with a pyramid model for human health. International Journal of Medicinal Mushrooms, 14(2), 95-134.‏
  • Chang, S. T. & Wasser, S. P. (2017). The cultivation and environmental impact of mushrooms. In Oxford Research Encyclopedia of Environmental Science.‏
  • Chen, S., Qiu, C., Huang, T., Zhou, W., Qi, Y., Gao, Y. & Qiu, L. (2013). Effect of 1-aminocyclopropane-1-carboxylic acid deaminase producing bacteria on the hyphal growth and primordium initiation of Agaricus bisporus. Fungal Ecology, 6(1), 110-118.‏
  • Cho, Y. S., Kim, J. S., Crowley, D. E. & Cho, B. G. (2003). Growth promotion of the edible fungus Pleurotus ostreatus by fluorescent pseudomonads. FEMS microbiology Letters, 218(2), 271-276.‏
  • Colauto, N. B., Fermor, T. R., Eira, A. F. & Linde, G. A. (2016). Pseudomonas putida stimulates primordia on Agaricus bitorquis. Current Microbiology, 72(4), 482-488.‏
  • Desrumaux, B., Calus, A. & Sedeyn, P. (2000). Minerals and microelements in the mushroom substrate: a production limiting factor. Science and Cultivation of Edible Fungi, 15(1), 327-334.‏
  • Ebadi, A., Alikhani, H. A. & Rashtbari, M. (2012). Effect of plant growth promoting bacteria (PGPR) on the morpho‑physiological properties of button mushroom Agaricus bisporus in two different culturing beds. International Research Journal of Basic and Applied Sciences, 3, 203-212.‏
  • Eira, A. D. (2003). Cultivo do cogumelo medicinal Agaricus blazei (Murrill) SS Heinemann ou Agaricus brasiliensis (Wasser et al.). Vicosa, Aprenda Facil, 398p.‏
  • Guo, X., Zou, X. & Sun, M. (2009). Effects of phytohormones on mycelial growth and exopolysaccharide biosynthesis of medicinal mushroom Pellinus linteus. Bioprocess and Biosystems Engineering, 32(5), 701-707.‏
  • Han, J. (1999). The influence of photosynthetic bacteria treatments on the crop yield, dry matter content, and protein content of the mushroom Agaricus bisporus. Scientia Horticulturae, 82(1-2), 171-178.‏
  • Jiang, T., Zheng, X., Li, J., Jing, G., Cai, L. & Ying, T. (2011). Integrated application of nitric oxide and modified atmosphere packaging to improve quality retention of button mushroom (Agaricus bisporus). Food Chemistry, 126(4), 1693-1699.‏
  • Jurak, E., Kabel, M. A. & Gruppen, H. (2014). Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus. Carbohydrate Polymers, 101, 281-288.‏
  • Kim, M. K., Math, R. K., Cho, K. M., Shin, K. J., Kim, J. O., San Ryu, J. & Yun, H. D. (2008). Effect of Pseudomonas sp. P7014 on the growth of edible mushroom Pleurotus eryngii in bottle culture for commercial production. Bioresource Technology, 99(8), 3306-3308.‏
  • Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T & Kim, K. H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays) response. Chemosphere, 142, 153-159.‏
  • Kirbag, S. & Akyuz, M. (2008). Evaluation of agricultural wastes for the cultivation of Pleurotus eryngii (DC. ex Fr.) Quel. var. ferulae Lanzi. African Journal of Biotechnology, 7(20), 3660-3664.
  • Kochert, G. (1978). Carbohydrate determination by the phenol-sulfuric acid method. Handbook of Phycological Methods: Physiological and Biochemical Methods. London: Cambridge University Press.
  • Kumar, V., Goala, M., Kumar, P., Singh, J., Kumar, P. & Kumari, S. (2020). Integration of treated agro-based wastewaters (TAWs) management with mushroom cultivation. Environmental Degradation: Causes and Remediation Strategies, 1, 63-75.
  • Mamiro, D. P. & Royse, D. J. (2008). The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost. Bioresource Technology, 99(8), 3205-3212.‏
  • Mascarin, G. M., Kobori, N. N., Jackson, M. A., Dunlap, C. A. & Delalibera Jr, Í. (2018). Nitrogen sources affect productivity, desiccation tolerance and storage stability of Beauveria bassiana blastospores. Journal of Applied Microbiology, 124(3), 810-820.‏
  • Mohammad, A. O., & Sabaa, A. E. (2013). Impact of some Pseudomonas isolated from casing soil on the hyphal growth of Agaricus bisporus. Canadian Journal on Computing in Mathematics, Natural Sciences, Engineering and Medicine, 4(1), 45-48.‏
  • Nurudeen, T. A., Ekpo, E. N., Olasupo, O. O., Okunrotifa, A. O. & Haastrup, N. O. (2014). Effect of supplements on the yield and nutritional composition of Oyster Mushroom (Pleurotus sajor-caju) cultivated on sawdust forestry. Journal of Environmental Science, (3), 1242-1251.‏
  • Pardo, A., Perona, M. A. & Pardo, J. (2007). Indoor composting of vine by-products to produce substrates for mushroom cultivation. Spanish Journal of Agricultural Research, (3), 417-424.‏
  • Pardo-Gimenez, A., Carrasco, J., Roncero, J. M., Álvarez-Orti, M., Zied, D. C. & Pardo-Gonzalez, J. E. (2018). Recycling of the biomass waste defatted almond meal as a novel nutritional supplementation for cultivated edible mushrooms. Acta Scientiarum. Agronomy, 40, 1-9.
  • Pecchia, J. O. H. N., Cortese, R. A. C. H. E. L. & Albert, I. S. T. V. A. N. (2014). Investigation into the microbial community changes that occur in the casing layer during cropping of the white button mushroom, Agaricus bisporus. In Proceedings of 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), New Delhi, India, 19-22 November 2014. Volume I & II (pp. 309-313). ICAR-Directorate of Mushroom Research.‏
  • Prathap, M. & Kumari, B. R. (2015). A critical review on plant growth promoting rhizobacteria. Journal of Plant Pathology and Microbiology, 6(4)., 1-4.
  • Pratiksha, K., Narute, T. K., Surabhi, S., Ganesh, A. & Sujoy, S. (2017). Effect of liquid biofertilizers on the yield of button mushroom. Journal of Mycopathological Research, 55(2), 135-141.‏
  • Remezan, D. & Siah Sar, A. B. (2010). Assessing the impact of casing soil on some quantitative and qualitative characteristics of button mushroom (Agaricus bisporus ). Iranian Journal of Hortcultural Science, 41(3), 393-393. (In Farsi)
  • Riahi, H. O. S. S. E. I. N., Eskash, A. & Shariatmadari, Z. (2011). Effect of bacterial and cyanobacterial culture on growth, quality and yield of Agaricus bisporus. In Mushroom biology and mushroom products. Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products, Arcachon, France, 4-7 October, 2011. Volume 1. Oral presentations (pp. 406-411). Institut National de la Recherche Agronomique (INRA).‏
  • Roca, A., Pizarro‐Tobias, P., Udaondo, Z., Fernandez, M., Matilla, M. A., Molina‐Henares, M. A. & Ramos, J. L. (2013). Analysis of the plant growth‐promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD‐ Environmental Microbiology, 15(3), 780-794.‏
  • Siyoum, N. A., Surridge, K., Van der Linde, E. J. & Korsten, L. (2016). Microbial succession in white button mushroom production systems from compost and casing to a marketable packed product. Annals of Microbiology, 66(1), 151-164.‏
  • Torabi-Giglou, M., Noroozi, H., Maleki Lajayer, H. & Dehdar, B. (2020). Effects of organic and biological fertilizers on growth and nutrient content of Spinach (Spinacea oleracea). Journal of Vegetables Sciences, 3(2), 109-121.
  • Vijay, B., Sharma, S. R. & Lakhanpal, T. N. (2002). Effect of treating post-composting with different concentrations of formaldehyde on the yield of Agaricus bisporus. Mushroom Biology and Mushroom Products, 239-242.‏
  • Vos, A. M., Heijboer, A., Boschker, H. T., Bonnet, B., Lugones, L. G. & Wosten, H. A. (2017). Microbial biomass in compost during colonization of Agaricus bisporus. AMB Express, 7(1), 1-7.‏
  • Weil, D. A., Beelman, R. B. & Beyer, D. M. (2006). Manganese and other micronutrient additions to improve yield of Agaricus bisporus. Bioresource Technology, 97(8), 1012-1017.‏
  • Zahir, Z. A. & Arshad, M. (2004). Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81, 97-168.
  • Zarenejad, F., Yakhchali, B. & Rasooli, I. (2012). Evaluation of indigenous potent mushroom growth promoting bacteria (MGPB) on Agaricus bisporus production. World Journal of Microbiology and Biotechnology, 28(1), 99-104.‏
  • Zied, D. C., Savoie, J. M. & Pardo-Gimenez, A. (2011). Soybean the main nitrogen source in cultivation substrates of edible and medicinal mushrooms. Soybean and Nutrition, 22, 433-452.