بهبود رشد جنین‌های رویشی مارچوبه اکتاپلوئید در شرایط اسمزی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران

2 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان، رشت، ایران

3 استادیار گروه علوم باغبانی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

10.22034/iuvs.2021.533888.1169

چکیده

جنین‏زایی رویشی، روشی است که در آن ساختارهای دوقطبی، از سلول بدنی ایجاد می‏شود. در طی فرآیند تمایز سلول، ریز‏نمونه به محرک‌های درون‌زا پاسخ می‌دهد و در نتیجه، برنامه سلول را جهت می‏دهد. در این پژوهش بررسی تأثیر شرایط اسمزی بر تعداد جنین، سرعت رشد نسبی جنین، رنگیزه‌های فتوسنتزی و پرولین جنین‏های رویشی مارچوبه (Asparagus officinalis L.) اکتاپلوئید مورد بررسی قرار گرفته است. برای القای جنین رویشی از محیط کشت مایع B5 حاوی دو میلی‏گرم بر لیتر 2,4-D استفاده شد و در ادامه از ساکارز با دو غلظت 40 و 60 گرم در لیتر، پلی‏اتیلن‏گلایکول (PEG) با سه غلظت 15، 30 و 60 گرم در لیتر، پنج و 10 میکرومولار آبسیزیک‏اسید و برای اعمال تنش اسمزی چهار و شش دسی‌زیمنس بر متر شوری با کاربرد نمک  کلرید سدیم بر جنین‏های رویشی مارچوبه استفاده شد. بر اساس نتایج به‌دست آمده، بیشترین تعداد جنین کروی (16/3 عدد) با کاربرد 60 گرم PEG به‌دست آمد که با تیمار شش دسی‌زیمنس کلرید ‏سدیم (16/2 عدد) تفاوت معنی‏داری نداشت. بالاترین تعداد جنین دوقطبی (16/13 عدد) مربوط به تیمار شش دسی‌زیمنس کلرید ‏سدیم بود. بعد از آن 60 گرم PEG با 16/6 عدد بیشترین تعداد جنین دوقطبی را نشان داد. بالاترین سرعت رشد نسبی جنین در تیمارهای 15 گرم PEG (37/11 میلی‌گرم در روز) و چهار دسی‌زیمنس کلرید‏ سدیم (23/11 میلی‌گرم در روز) مشاهده شد. کمترین سرعت رشد نسبی جنین در 10 میکرومولار آبسیزیک‌‏اسید (47/3 میلی‌‌گرم در روز) ثبت شد. در تیمارهای 60 گرم PEG و 10 میکرومولار آبسزیک‏اسید با 180/0 و 019/0 میلی‌گرم بر وزن ‏تر به‌ترتیب بیشترین و کمترین میزان کلروفیل کل ثبت شد. بیشترین مقدار کاروتنوئید (054/0 و 047/0 میلی‏گرم بر وزن‏ تر) مربوط به تیمارهای 60 گرم PEG و 40 گرم ساکارز بود. بیشترین مقدار آنتوسیانین (184/0 میلی‏گرم بر وزن‏ تر) در 10 میکرومولار آبسزیک‏اسید و بیشترین میزان پرولین (66/67 میکرومول بر گرم وزن‏ تر) در پنج میکرومولار آبسزیک‏اسید به‌دست آمد. در نهایت شوری شش دسی‏زیمنس بر متر، 60 گرم PEG و پنج میکرومولار آبسزیک‏اسید با کمترین اثر تنش‏زا در مقایسه با ساکارز، بیشترین تأثیر را در رشد و بهبود تکامل جنین‏های رویشی مارچوبه داشته است که در مراحل تولید کلون در مارچوبه قابل‌توصیه می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Improving the Growth of Ooctoploid Asparagus Embryos under Osmotic Conditions

نویسندگان [English]

  • Aghileh Lotfi 1
  • Yousef Hamidoghli 2
  • Seyyed Javad Mousavizadeh 3
1 M.Sc. Student, Department of Horticultural Sciences, Faculty of Agriculture, Guilan University, Rasht, Iran
2 Associated Professor, Department of Horticultural Sciences, Faculty of Agriculture, Guilan University, Rasht, Iran
3 Assistant Professor, Department of Horticultural Sciences, Gorgan University of agricultural sciences and natural resources, Gorgan, Iran
چکیده [English]

Introduction: Micropropagation of plants in in vitro condition with high relative humidity causes plants to wilt by transfer to in vivo condition. High relative humidity is one of the main factors disrupting stomatal function in the stress condition, darkness and the presence of ABA. Therefore, any factor that can affect the closure of the stomatal in in vitro, can lead to increased success in adaptation and transfer of tissue culture plants to in vivo condition. Embryogenesis is a technique in which bipolar structures are formed from somatic cells. During the cell differentiation process, the explant responds to endogenous stimuli and, as a result, directs the cell program. The induction and growth of somatic embryos are affected by the composition of the medium, especially sugar and osmotic conditions. In the present study, the effect of osmotic conditions was investigated on somatic embryo number, relative growth rate, photosynthetic pigments and proline of octoploid asparagus (Asparagus officinalis L.) embryogenesis.
Materials and Methods: Asparagus officinalis L., a native Iranian octoploid, was used in this project. The seeds were first washed with water and then immersed in 70% alcohol for 30 seconds. Seed disinfection was performed with 2% sodium hypochlorite for 15 minutes. The seeds were then washed three times with sterile distilled water and then dried with filter paper and placed on culture media. The B5 liquid medium containing 2 mg L-1 2, 4-D was used for induction of somatic embryogenesis. Sucrose with two concentrations of 40 and 60 gL-1, polyethylene glycol (PEG) with three concentrations of 30, 15 and 60 gL-1, abscisic acid (ABA) of 5 and 10 μM, 4 and 6 dSm-1 of salinity using NaCl were used to apply osmotic stress to asparagus somatic embryos. The cultured media were kept in a growth chamber with 3000 lux light at 25± 2°C for 16 hours. Four weeks after culture, embryos were examined and recorded for regenerative capacity.
Results: According to the results, the highest number of spherical embryos (3.16) was related to PEG60 g, which was not statistically significantly different from 6 dS m-1 NaCl (2.16). The highest number of bipolar embryos (13.16) was related to 6 dS m-1 NaCl. PEG 60 g with 6.16 showed the highest number of bipolar embryos. The highest relative growth rate was observed in PEG 15 g (11.37 mg day-1) and 4 dS m-1 of NaCl (11.23 mg day-1). The lowest relative growth rate was recorded in 10 μM ABA (3.47 mg day-1). Based on the comparison results, the highest mean of chlorophyll a (0.077 mg FW-1) was related to 60 g PEG and the lowest (0.028 mg FW-1) was related to sucrose 60 g. The highest amount of chlorophyll b (0.103 mg kg-1FW) was related to 60 PEG g and the lowest amount (0.01 and 0.007 mg kg-1 FW) was related to 10 μM ABA. The highest amount of total chlorophyll (0.180 mg kg-1 FW) was related to PEG 60 g and the lowest amount (0.0199 mg kg-1 FW) was related to 10 μM ABA. The highest amount of carotenoids (0.054 and 0.047 mg kg-1 FW) were related to PEG 60 g and sucrose 40 g, respectively. The highest amount of anthocyanin (0.184 mg kg-1 FW) was obtained in 10 μM ABA and the highest amount of proline (67.66 μmol g-1 FW) was obtained in 5 μM ABA.
Conclusion: Finally, salinity of 6 dS, PEG 60 g and ABA at a concentration of 5 μM with the least stressful effect compared to sucrose, had the greatest effect on the growth and development of asparagus somatic embryos which is recommended in the production stages of clones in asparagus. By applying high concentrations of polyethylene glycol due to osmotic pressure and stress, the production of oxygen free radicals increases and chloroplast structure destruction occurs. By inhibiting the biosynthesis of new chlorophylls and converting carotenoids to anthocyanins, it reduces the content of chlorophyll, carotenoid and increases anthocyanin. The in vitro response of asparagus somatic embryos to increased osmotic pressure with PEG is to increase the concentration of chlorophyll and anthocyanin. Increasing the osmotic pressure of the medium with sucrose led to an increase in proline in somatic embryos. Proline synthesis increases with increasing stress, which indicates the embryos effort to increase resistance to stressful conditions.

کلیدواژه‌ها [English]

  • Anthocyanins
  • Octaploid Asparagus
  • Osmotic substances
  • Photosynthetic pigments
  • Aguilar, M., Espadas, F., Coello, J., Maust, B., Trejo, C., Robert, M. & Santamaria, J. (2000). The role of abscisic in controlling leaf water loss, survival and growth of micropropagated Tagetes erecta plants when transferred directly to the field. Journal of Experimental Botany, 51(352), 1861-1866.
  • Bano, A., Ullah, F. & Nosheen, A. (2012). Role of absicisic acid and drought stress on the activities of antioxidant enzymes in Wheat. Plant Soil Environment, 58(4), 181-185.
  • Bates, L. S., Waldern, R. P. & Tear, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil Science, 39, 205-207.
  • Bayarash, M., Raghami, M., Roosta, H. & Karimi, H. (2020). Evaluation of growth, physiological and photosynthetic characteristics of two spinach cultivars (Hybrid and Iranian) under alkaline water stress. Journal of Vegetables Sciences, 4(1), 25-39.
  • Bittencourt, M. L. C., Dias, D. C. F. S., Dias, L. A. S. & Araujo, E. F. (2004). Effects of priming on asparagus seed germination and vigour under water and temperature stress. Seed Science & Technology, 32, 607-616.
  • Bolli, R. & Dalmear, S. (2010). Effect of exogenous abscisic acid and drought stress on growth maize. Plant Physiology, 99, 762-764.
  • Dogan, M. (2020). The effects of different sucrose concentrations on the regeneration area of Riccia Fluitans, a medicinal aquatic plant. Journal of Engineering Technology and Applied Sciences, 5(2), 51-58.‏
  • Fanourakis, D., Bouranis, D., Giday, H., Carvalho, D. R., Nejad, A. R. & Ottosen, C. O. (2016). Improving stomatal functioning at elevated growth air humidity: a review. Journal of Plant Physiology, 207, 51-60.
  • Faville, M.J., Silvester, W. B., Green, T. G. A. & Jermyn, W. A. (1999). Photosynthetic characteristics of three asparagus cultivars differing in yield. Crop Science, 39, 1070-1077.
  • Flowers, T. J., Troke, P. F. & Yeo, A. R. (1977). The mechanisms of salt tolerance in halophytes. Annual Review Plant Physiology, 28, 89-121.
  • Gamburg, O. L., Miller, R. A. & Ojima, K. (1968). Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Response, 50, 151-158.
  • Giday, H., Fanourakis, D., Kjaer, K. H., Fomsgaard, I. S. & Ottosen, C. O. (2014). Threshold response of stomatal closing ability to leaf abscisic acid concentration during growth. Journal of Experimental Botany, 65, 4361-4370.
  • Hashemi, E. Fakheri, B. MahdiNezhad, N. & Mohammadpour Vashvaei, R. (2018). Effects of nano and nano bio-fertilizer on physiological, biochemical characteristics and yield of roselle (Hibisicus sabdariffa) under drought stress. Agricultural Crops Production, 20, 1, 45-66.
  • Hosseini, Z., Zare Bavani, M. & Zare, A. (2020). Investigation of salinity Tolerance in Onion (Allium cepa) cultivars using stress tolerance indices. Journal of Vegetables Sciences, 3(2), 43-61. (In Farsi)
  • Jain, M. S. Gupta, P. K. & Newton, R. J. (1995). Somatic embryogenesis in woody Plants. Kluwer Academic Publishers, 1, 253-263.
  • John J. F. & Jones, M. L. (2010). Abscisic acid application enhances drought stress tolerance in bedding plants. Horticultural Science, 45(3), 409-413.
  • Khalid, K. A., da Silva, J. A. T. & Cai, W. (2010). Water deficit and polyethylene glycol 6000 affects morphological and biochemical characters of Pelargonium odoratissimum (L.). Scientia Horticulturea, 125, 159-166.
  • Lichtenthaler, H. K. (1987). Chlorophylls and carotinoids. Pigments of photosynthetic membranes. Method Enzye, 148, 350-382
  • Madava-Rao, K.V., Raghavendra, A. S. & Janardhan-Reddy, K. (2006). Physiology and Molecular Biology of Stress Tolerance in Plants. Springer. 345 p.
  • Mashyekhi, K. (2007). Plant Somatic Embryogenesis. Makhtomgholi Fraghi (Sarli) press. 488 P. (In Farsi)
  • Memon, A. A., Raza, A., Palijo, S., Wenqian, X. & Xueyan, X. (2019). Effect of carbon sources and their various concentrations for optimize in in vitro micro propagation of banana (Musa) Basrai. International Journal of Environment Agriculture and Biotechnology, 4(4), 1108-1115.
  • Mills, D. (1989). Differential response of various tissues of Asparagus officinalis to sodium chloride. Journal of Experimental Botany, 40(4), 485-491.
  • Mousavizadeh, S. J., Mashayekhi, K., Hemmati, K. & Kamkar, B. (2010). Evaluation of media elements and materials on petiole somatic embryogenesis of Carrot (Daucus carota). Journal of Plant Production, 17(1), 1-21. (In Farsi)
  • Mousavizadeh, S. J., Hassandokht, M. R. & Kashi, A. (2015). Multivariate analysis of edible Asparagus species in Iran by morphological characters. Euphytica, 206, 445-457.
  • Mousavizadeh, S. J., Hassandokht, M. R., Kashi, A., Gil, J., Cabrera, A. & Moreno, R. (2016). Physical mapping of 5S and 45S rDNA genes and ploidy levels of Iranian Asparagus Scientia Horticulturae, 211(4), 269-276.
  • Mousavizadeh, S., Mashayekhi, K. & Hassandokht, M. R. (2017a). Indirect somatic embryogenesis on rare octoploid Asparagus breslerianus Scientia Horticulturae, 226, 184-190.
  • Mousavizadeh, S. J., Hassandokht, M. R. & Kashi, A. (2017b). In vitro response of Asparagus breslerianus to NaCl. Journal of Medicinal Plants and By-products, 2, 153-163.
  • Neumann, K. H. (1995). Pflanzliche zell and gewebekulturen. Verlag Eugen Ulmer. 304 p.
  • Nishiuchi, Y. (2012). Multiplication of tulip bulb by tissue culture In-vitro. Acta Horticulture, 177, 56-69.
  • Nowakn, B., Miczynski, K. & Hudy, L. (2004). Sugar up take and utilization during adventitious buds differentiation on in vitro leaf explants of Wegirka Zwyka plum (Prunus domestica). Plant Cell Tissue and Organ Culture, 76, 255-260.
  • Rai, M. K., Akhtar, N. & Jaiswal, V. S. (2007). Somatic embryogenesis and plant regeneration in Psidium guajava cv. Banarasi local. Scientia Horticulture, 113(2), 129-133.
  • Rock, C. D. & Quatrano, R. S. (1995). Plant hormones physiology, Biochemistry and Molecular Biology. The Netherlands. Kluwer Acad. Publish. 611pp.
  • Salma, U. K, Khatun, F., Bhuiyan, M. J. H., Yasmin, S. & Khan, T. H. (2016). In vitro screening for drought tolerance of some chickpea varieties in Bangladesh. Agriculture & Progress, 27(2), 110-118.
  • Shah, S. H., Wainwright, S. J. & Merrett, M. J. (1990). The interaction of sodium and calcium chlorides and light on growth, potassium nutrition, and proline accumulation in callus cultures of Medicago sativa L. New Phytological, 116, 37-45.
  • Sharkey, T. D. & Seemann, J. R. (2005). Mild water stress effect on carbon-reduction-cycle intermediates, Ribulose Bisphosphate Carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiology, 89, 1060-1065.
  • Sharma, N., Abrams, S. R. & Waterer, D. R. (2006). Evaluation of abscisic acid analogs as holding agents for bedding plant seedlings. Horticulture Technology, 16, 71-77.
  • Shimasaki, K., and Fukurnoto, Y. (2013). In-vitro bulbing in Lilium x formolongi hort seedlings. XXV International Horticulture Congress, 520-536.
  • Sircelj, H., Tausz, M., Grill, D. & Batic, F. (2007). Detecting different levels of drought stress in apple trees (Malus domestica ) with selected biochemical and physiological parameters. Scientia Horticulturae, 113, 362-369.
  • Sundararajan, S., Nayeem, S., Subiramani, S., Venkatesh, R. & Sathishkumar, R. (2019). Optimizing culture conditions for high frequency somatic embryogenesis and plantlet conversion in (Daucus carota L). Biologia, 74, 695-707.
  • Taiz, L. & Zeiger, E. (2002). Plant Physiology, Sinauer Associates; 3 edition, 690 p.
  • Urban, M. O., Planchon, S., Hostickova, I., Vankova, R., Dobrev, P., Renaut, J., Klima, M. & Vitamvas, P. (2021). The resistance of oilseed rape microspore-derived embryos to osmotic stress is associated with the accumulation of energy metabolism proteins, redox homeostasis, higher abscisic acid, and cytokinin contents. Frontiers in Plant Science, 12, 628167.
  • Wanger, G. J. (1979). Content and vacuole/extra vacuole distribution of netural sugars, free amino acids, and anthocyanins in protoplasts. Plant Physiology, 64, 88-93.
  • Waskiewicz, A., Beszterda, M. & Golinski, P. (2013). ABA: Role in plant signaling under salt stress. Salt Stress in Plants, 175-196
  • Wu, G., Wei, X., Wang, X. & Wei, Y. (2021). Changes in biochemistry and histochemical characteristics during somatic embryogenesis in Ormosia henryi Plant Cell, Tissue and Organ Culture, 144(3), 505-517.
  • Yan-Lun, J., Min, L., Hui, Z., Jiang-Fei M. & Yu-Lin F. (2016). Effect of exogenous abscisic acid and aethyl aasmonate on anthocyanin aomposition, fatty acids, and volatile compounds of cabernet sauvignon (Vitis vinifera) grape berries. Molecul, 21, 2-15
  • Zeevart, J. A. D., Zhaolong, W., Huang, B. & Qingzhang, X. (2003). Effect of abscisic acid on drought responses of Kentucky bluegrass. American Society of Horticultural Sciences, 128(1), 36-41.
  • Zhang, J., Jia, W., Yang, J. & Ismail, A. M. (2006). Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Research, 97, 111-119.