بررسی بیوشیمیایی، رشد رویشی و زایشی دو رقم بامیه تحت تنش شوری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه علوم باغبانی، دانشکده علوم کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، خوزستان، ایران

2 استاد گروه علوم و مهندسی باغبانی، دانشکده علوم کشاورزی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، خوزستان، ایران

10.22034/iuvs.2016.25766

چکیده

اثر شوری بر رشد و ترکیبات بیوشیمیایی دو رقم بامیه ’سبز اهوازی‘ و’سفید دزفولی‘در آزمایش گلخانه‌ای به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با چهار تکرار بررسی گردید. تیمارهای تنش شوری عبارت بود از شاهد )آب مقطر(، 25، 50، 75، 100 و 125 میلی‌مولار کلرید سدیم که در مرحله چهار برگی اعمال و تا برداشت محصول ادامه داشت. در این بررسی ویژگی‌های قطر و ارتفاع ساقه، وزن تر و خشک شاخساره، سطح برگ، میزان کلروفیل، سدیم و پتاسیم برگ، زمان گلدهی، تعداد گل و میوه، درصد میوه‌های درجه یک و وزن کل میوه‌ها اندازه‌گیری شد. نتایج نشان داد که رقم ’سفید دزفولی‘ تحمل بهتری از خود در برابر شوری نشان داد. کلرید سدیم به‌طور معنی‌داری باعث افزایش سدیم و کاهش پتاسیم در برگ گردید. همچنین نتایج نشان داد که تیمار تنش شوری باعث کاهش قطر و ارتفاع ساقه، وزن تر و خشک شاخساره، سطح برگ، میزان کلروفیل برگ، تعداد گل و میوه، درصد میوه‌های درجه یک و وزن میوه شد و زمان گلدهی را به تأخیر انداخت. با این وجود گیاه بامیه تا تنش شوری 25 میلی‌مولار کلرید سدیم توانست تولید میوه با کیفیت و کمیت بالا را داشته باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Biochemical Study of Vegetative and Reproductive Growth of Two Okra Cultivars under Salinity Stress

نویسندگان [English]

  • Mohammad Reza Salehi Salmi 1
  • Mohammed Hussain Daneshvar 2
1 Assistant Professor, Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan, Iran
2 Professor, Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Khuzestan, Iran
چکیده [English]

Effect of salinity on growth and biochemical composition of two varieties of okra 'Ahwazi green' and 'white Dzfvly'dr greenhouse factorial experiment in a completely randomized design with four replications was the Grdyd.tymarhay salinity control (distilled water), 25, 50 , 75, 100 and 125 mM sodium chloride applied in four-leaf stage and continued until harvest. In this study, stem diameter and height characteristics, shoot fresh and dry weight, leaf area, chlorophyll content, sodium and potassium of leaves, flowering time, number of flowers and fruits, percentage of first grade fruits and total weight of fruits were measured. The results showed that Dezfuli white cultivar showed better tolerance to salinity. Sodium chloride significantly increased sodium and decreased potassium in leaves. The results also showed that salinity stress treatment reduced stem diameter and height, shoot fresh and dry weight, leaf area, leaf chlorophyll content, number of flowers and fruits, percentage of first grade fruits and fruit weight and delayed flowering time. However, okra plant was able to produce high quality and quantity fruit up to 25 mM salinity stress.

کلیدواژه‌ها [English]

  • Potassium
  • Stress
  • Chlorophyll
  • Sodium chloride
  • morphological
  • Abid, M., Malik, S. A., Bilal, K. H. & Wajid, R. A. (2002). Response of okra (Abelmoschus esculentus) to EC and SAR of irrigation water. International journal of Agriculture and Biology, 4 (3), 311-315.
  • Arvin, M. J. & Kazemi-Pour, N. (2002). Effects of salinity and drought stresses on growth and chemical and biochemical compositions of onion (Allium cepa) Cultivars. Science and Technology of Agricultural and Natural Resources, 5(4), 41-52. (In Farsi)
  • Ashraf, M., Arfan, M. & Ashfaq, A. (2003). Salt tolerance in okra: ion relations and gas exchange Journal of Plant Nutrition, 26(1), 63-79.
  • Besma, B. D. & Mounir, D. (2010). Biochemical and mineral responses of okra seeds (Abelmoschus esculentus variety Marsaouia) to salt and thermal stresses. Journal of Agronomy, 9(2), 29-37.
  • Daneshvar, M. H. (2014). Vegetables Growing (8th Ed.). Shahid Chamran University. (In Farsi)
  • Dkhil, B. & Denden, M. (2010). Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus (Moench.) seeds. African Journal of Agricultural Research, 5, 1412-1418.
  • Garg, B. K. & Lahiri, A. N. (1996). Problems of salt stress arid zone crops. In: Singh, R., Sheoran, I. S. & Saharan, R. (Eds.), Proceeding of the symposium on physiological, biochemical and genetic aspects of crop plants in relation to environmental stresses. H.A.U., Hissar, India. pp: 63-68.
  • Gomez, L., Navarro Pedreno, J., Moral, R., Iborra, M. R., Palacios, G. & Mataix, F. (2003). Salinity and nitrogen fertilization affecting the macronutrient content and yield of sweet pepper plants. Journal of Plant Nutrition, 19, 353-359.
  • Graifenberg, A., Botrini, L., Giustiniani, L. & Liqucci Di Paola, M. (2003). Yield, Growth and element content of Cucurbita pepo L. grown under saline-sodic conditions. Journal of Horticultural Science, 71, 305-311.
  • Hoffman, G. J. & Rawlins, S. L. (1971). Growth and water potential of root crops as influenced by salinity and relative humidity. Agronomy Journal, 63, 877-880.
  • Humphries, E. C. (1956). Mineral components and ash analysis. In: Peach, K. and Tracey, N.V. (). Modern methods of plant analysis. pp 468-502.
  • Ibrahim, K. M., El-Gereadly, N. H. M. & Collin, H. A. (1991). Effects of salinity on growth and ionic composition of Salivia splendens. Journal of Horticultural Science, 66, 215-222.
  • Ikram, H., Khan, A., Azhar, F. M. & Ullah, E. (2010). Genetic basis of variation for salinity tolerance in okra (Abelmoschus esculentus). Pakistan Journal of Botany, 421, 567-1581.
  • Kasukabe, Y., Marshall, N. & Fanton, B. (2004). Salt stress causes depletion in CO2 assimilation in okra. Plant Cell Physiology, 45, 1016-1019.
  • Lichtenthaler, H. K. & Wellburn, A. R. (1985). Determination of total carotenoids and chlorophylls A and B of leaf in different solvents. Biochemical Society Transactions, 11, 591-592.
  • Minhas, P. S. & Gupta, R. K. (1993). Using high salinity and SAR waters for crop production–Some Indian In: Leith, H. & Al–Masoom, A.
  • (Eds.), Towards the rational use of high salinity tolerant plants (Vol.2). Kluwer Academic Publishers, Amsterdam, Netherlands. pp: 423–432.
  • Miyatoo, S., Glenn, E. P. & Olsen, M. W. (1996). Growth, water use and salt uptake of four halophytes irrigated with highly saline water. Journal of Arid Environments, 32, 141-159.
  • Mizrahi, Y. & Pasternak, D. (2005). Effect of salinity on quality of various agricultural crops. Plant Soil, 89, 301-307.
  • Morales, C., Cusido, R. M., Palazon, J. & Bonfill, M. (1993). Response of Digitalis purpurea plant to temporary Journal of Plant Nutrition, 16, 335-327.
  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environment, 25 239-250.
  • Paradossi, A., Bagnoli, G., Malorgio, F., Campiotti, C. A. & Tognoni, F. (1992). NaCl effects on celery grown in Scientia Horticulturae, 81, 242-229.
  • Shahid, M., Pervez, M., Balal, R. M., Ahmad, R., Ayyub, C. M., Abbas, T. & Akhtar, N. (2011). Salt stress effects on some morphological and physiological characteristics of okra (Abelmoschus esculentus). Soil Environment, 30 66-73.
  • Singh, A. K. (2004). The physiology of salt tolerance in four genotypes of chickpea during germination. Journal of Agricultural Science and Technology, 6, 87-93.
  • Stepien, P. & Klobus, G. (2006). Water relations and photosynthesis in Cucumis sativus leaves under salt stress. Biologia Plantarum, 50, 610-616.
  • Storey, R., Gorham, J., Pitman, M. C., Hanson, M. G. & Gage, D. (1993). Response of Melanthera biflora to salinity and water stress. Journal of Experimental Botany, 44, 1551-1561.
  • Tanji, K. K. (1990). Agriculttiral Salinity Assessment and Management. ASCE, New York. 619 p.
  • Zadeh, H. M. & Naeini, M. B. (2007). Effects of salinity stress on the morphology and yield of two cultivars of canola (Brassica napus). Journal of Agronomy, 6, 409-414.
  • Zhu, J. K. (2001). Plant salt tolerance. Trends Plant Science, 6, 66-71.