برآورد وراثت‌پذیری و پاسخ به انتخاب برای صفت تعداد میوه در جمعیت اصلاحی خیار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه علوم باغبانی، پردیس دانشگاهی دانشگاه گیلان، رشت، ایران

2 گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه گیلان، رشت

3 گروه بیوتکنولوژی، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران

4 گروه علوم باغبانی، دانشکده علوم کشاورزی، دانشگاه کردستان، سنندج، ایران

چکیده

تعداد میوه در بوته اصلی‌ترین صفت تعیین کننده پتانسیل عملکرد لاین‌های خیار است. در این تحقیق بذرهای نسل F1 حاصل از تلاقی لاین‌های 118 و 119 خودگشن شده و نسل F2 به دست آمد. سپس هر یک از تک بوته‌ها، خودگشن شده و نتاج F3 به دست آمد. تعداد 10 بوته از هر کدام از جمعیت‌های F3خیار در خطوط جداگانه در قالب طرح بلوک‌های کامل تصادفی کشت و صفات مرتبط با عملکرد جمعیت‌های F3 اندازه‌گیری و ثبت شد. سپس بذور جمعیت‌های برتر در سال زراعی بعد مجددا کشت شدند و اجازه گرده‌افشانی باز به آن‌ها داده شد. نتاج حاصل از گرده‌افشانی باز لاین‌های انتخابی به‌طور مخلوط جمع‌آوری و در سال زراعی بعدی مجددا کشت شدند تا میزان پیشرفت ژنتیکی حاصل از انتخاب برای صفات مورد نظر تعیین گردد. نتایج نشان داد جمعیت اصلاحی به دست آمده با میانگین 82/39 میوه در بوته نسبت به میانگین جمعیت پایه با 91/28 میوه در بوته، 73/37 درصد افزایش یافت که می‌توان از جمعیت حاصل به عنوان منبع ژنتیکی امیدبخش خیار برای انتخاب لاین‌های پرمحصول در برنامه‌های اصلاحی بعدی استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Number of fruit heritability and response to selection in breeding population of cucumber

نویسندگان [English]

  • Hamid Kalvandi 1
  • Jamalali Olfati 2
  • Habibolah Samizadeh Lahiji 3
  • Yavar Vafaee 4
1 Department of Horticultural Sciences, University of Guilan, Rasht, Iran.
2 Department of Horticultural sciences, Faculty of Agricultural sciences, University of Guilan, Rasht, Iran.
3 Department of Biotechnology, Faculty of Agricultural sciences, University of Guilan, Rasht, Iran.
4 Department of Horticultural sciences, Faculty of Agricultural sciences, University of Kurdistan, Sanandaj, Iran.
چکیده [English]

The number of fruits per plant is the main trait in cucumber that determines the yield potential of lines. The F1 generation was obtained from a cross between lines 118 × 119 lines. The F2 generation was achieved by inbreeding of the F1 progenies and each of the F2 plants were inbred for generation of F3 progenies. Ten plants of each F3 population were planted in separate lines in a completely randomized complete block design and on the F3 plant populations different traits were measured and recorded. After evaluation of the F3 populations, the stock-seeds of the selected lines were re-cultivated in the following year and allowed to be open pollinated. The open-pollinated off-springs of selected lines were collected in a bulk method and in the following year, re-cultivated once again to determine the genetic value of the selection. Results indicated that the bred population with an average of 39.82 fruits per plant was 37.73 percent improved in comparison to average of the F3 population (28.91 fruits per plant). Therefore, the bred population can be used as a selection sources for further breeding programs and selection of more valuable cucumber lines.

کلیدواژه‌ها [English]

  • Seed-stock
  • Genetic advanced
  • Number of fruit per plant
  • selection differential

-Aliabadi, E., Amiri, R., & Lotfi, M. (2012). Inheritance of Traits Affecting Flavor in Cucumber and Introduction of the Best Index for Flavor Breeding. Seed and Plant Improvment Journal, 28(1), 1-15.
-Amand, P. C. S., & Wehner, T. C. (2001). Heritability and genetic variance estimates for leaf and stem resistance to gummy stem blight in two cucumber populations. Journal of the American Society for Horticultural Science, 126(1), 90-94.
-Chen, H., Tian, Y., Lu, X., & Liu, X. (2011). The inheritance of two novel subgynoecious genes in cucumber (Cucumis sativus L.). Scientia horticulturae, 127(3), 464-467.
-Cramer, C. S., & Wehner, T. C. (1999). Testcross performance of three selection cycles from four pickling cucumber populations. Journal of the American Society for Horticultural Science, 124(3), 257-261.
-Cramer, C. S., & Wehner, T. C. (2000). Path analysis of the correlation between fruit number and plant traits of cucumber populations. HortScience, 35(4), 708-711.
-Ells, J.E. and McSay, A.E., 1981. Yield comparisons of pickling cucumber cultivar trials for once-over harvesting. HortScience. 16:187–189.
-Falconer, D. S. & Mckay, T. F. C. (1996). Genetic constitution of a population. Introduction to quantitative genetics, 1, 5-22.
-Fatehi, Fatehi, F. & Maleki, M. (2007). Plant Breeding. Dibagaran Publication. 340 pp. (In Farsi)
-Gaikwad, A. G., Musmade, A. M., Dhumal, S. S. and Sonawane, H. G. (2011). Variability studies in cucumber (Cucumis sativus L.). Ecology Environment and Conservation, 17(4), 799-802.
-Golabadi, M., Golkar, P., & Eghtedary, A. (2015). Combining ability analysis of fruit yield and morphological traits in greenhouse cucumber (Cucumis sativus L.). Canadian Journal of Plant Science, 95(2), 377-385.
-Kumar, R., Kumar Meena, K. & Yadav, N. (2017). Breeding cucumber for quality improvement. International Journal of Farm Sciences, 7(1), 54-56.
-Kumar, S., Kumar, D., Kumar, R., Thakur, K. S. & Singh Dogra, B. (2013). Estimation of Genetic Variability and Divergence for Fruit Yield and Quality Traits in Cucumber (Cucumis Sativus L.) in North-Western Himalays. Universal Journal of Plant Science, 1, 27-36.
-Lertrat, K., & Lower, R. L. (1984). Pickling cucumber population improvement for increased fruit yield II. Report: Cucurbit genetics cooperative (USA).
-López-Sesé, A. I., & Staub, J. (2002). Combining ability analysis of yield components in cucumber. Journal of the American Society for Horticultural Science, 127(6), 931-937.
-Mardi, M., Talei, A. R. & Omidi, M. (2003). Study of genetic diversity and identification of yield components in Desi Chickpea. Iranian J. Field Crop Research, 34, 345-351.
-Mashilo, J., Shimeles, H. & Odindo, A. (2017). Phenotypic and genotypic characterization of bottle gourd [Lagenaria siceraria (Molina) Standl.] and implications for breeding: A Review. Journal of Scientia Horticulturae, 222, 136-144.
-Mohammadi, R., Dehghani, H. & Karimzadeh, Gh. (2015). Graphic analysis of trait relations of cantaloupe using the Biplot method. Journal of Plant Production Research, 21(4), 43-62.
-Nematzadeh, Gh. A. & Kiani, G. (2010). Plant breeding (classic methods). University of Agriculture Press, Sciences and Natural Resources of Sari. (In Farsi)
-Nienhuis, J., Lower, R. L., & Staub, J. E. (1983). Selection for improved low temperature germination in cucumber. Journal-American Society for Horticultural Science, 108, 1040-1043.

-Nienhuis, J., & Lower, R. L. (1988). Comparison of two recurrent selection procedures for yield in two pickling cucumber populations. Journal of the American Society for Horticultural Science, 113, 272-276.

-Olfati, J. A., Peyvast, Gh., Samizadeh, H., Rabiei, B. & Khodaparast, S. A. (2011). Estimation of general combinability, Private combining and heterozygosity a number of cucumber lines for performance through incomplete diallel crossings. Journal of Iranian Horticultural Sciences, 42(1), 53-64. (In Farsi)
-Olfati, J. A., Peyvast, Gh., Samizadeh, H., Rabiei, B. & Khodaparast, S. A. (2012). Estimation of general combinability, Private combining and heterozygosity a number of cucumber lines for the quality of fruit through incomplete diallel crossings. Journal of Iranian Horticultural Sciences, 26(4), 350-357. (In Farsi)
-Pal, S., Sharma, H., Rai, A. K., & Bhardwaj, R. K. (2016). Genetic variability, heritability and genetic gain for yield and quality traits in cucumber (Cucumis sativus L.). Supplement on Genetics and Plant Breeding, 11(3), 1985-1990.
-Salehi-Jozani, G., Abd-Mishani, S., Hoseinzadeh, A. H., & Seied Tabatabaei, B.E. (2003). Genetic diversity analysis of commercial potato cultivars (Solanum tuberosum) in Iran using RAPD- PCR technique. Iranian Journal of Agriculture, 34(4):1021-1029. (In Farsi)
-Sloane, J. T., Wehner, T. C., & Jenkins Jr, S. F. (1985). Inheritance of resistance to Rhizoctonia fruit rot in cucumber. HortScience. 20: 1119-1120.
-Shetty, N. V., & Wehner, T. C. (2002). Screening the cucumber germplasm collection for fruit yield and quality. Crop science, 42(6), 2174-2183.
-Shukla, I. N., Shunder, S., Singh, D. K., Singh, N., Pandey, R. & Awasti, P. N. (2010). Genetic variability and selection parameters for fruit yield in cucumber (Cucumis sativus L.). Current Advances in Agricultural Sciences. 2(2), 107-108.
-Smith, O. S., Lower, R. L., & Moll, R. H. (1978). Estimates of heritabilities and variance components in pickling cucumber [Cultivars]. Journal American Society for Horticultural Science. 103, 222–225.
-Staub, J. E., Lower, R. L., & Nienhuis, J. (1988). Correlated responses to selection for low temperature germination in cucumber. HortScience. 23, 745-746.
-Veena, R., Sidhu, A. S., Pitchaimuthu, M. & Souravi, K. (2012). Genetic evaluation of some cucumber (Cucumis sativus L.) genotypes for some yield and related traits. Electronic Journal of Plant Breeding, 3(3), 945-948.
-Wehner, T. C. (1989). Breeding for improved yield in cucumber. Plant Breeding Reviews, 6, 323-359.
-Wehner, T. C., & Cramer, C. S. (1996a). Gain for pickling cucumber yield and fruit shape using recurrent selection. Crop science, 36(6), 1538-1544.
-Wehner, T. C., & Cramer, C. S. (1996b). Ten cycles of recurrent selection for fruit yield, earliness, and quality in three slicing cucumber populations. Journal of the American Society for Horticultural Science, 121(3), 362-366.
-Wyszogrodzka, A. J., Williams, P. H. & Peterson, C. E. (1986). Search for resistance to gummy stem blight (Didymella bryoniae) in cucumber (Cucumis sativus L.). Euphytica, 35, 603-613.
-Yadav, Y. C., Kumar, S. and Singh, R. (2012). Studies on genetic variability, heritability and genetic advance in cucumber (Cucumis sativus L.). HortFlora Research Spectrum, 1(1), 34-37.