بررسی کاربرد نانو ذره دی‌اکسید تیتانیوم بر خصوصیات فیزیولوژیکی و پارامترهای فلورسانس کلروفیل در گیاه بادمجان (Solanum melongena L.) تحت تنش کم آبیاری

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی باغبانی، دانشکده کشاوری، دانشگاه مراغه، مراغه، آذربایجان شرقی

2 دانشجوی سابق گروه علوم و مهندسی باغبانی، دانشکده کشاورزی دانشگاه مراغه، مراغه، ایران

3 استادیار گروه علوم و مهندسی باغبانی، دانشکده کشاورزی دانشگاه مراغه، مراغه، ایران

چکیده

امروزه تنش خشکی مهم‌‌ترین عامل محدود ‌‌کننده رشد و تولید در گیاهان می‌باشد. نانوذره دی‌اکسید تیتانیوم می‌تواند تأثیرات متفاوتی بر خصوصیات مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی گیاه داشته باشد. پژوهش حاضر در قالب فاکتوریل بر پایه بلوک کامل تصادفی با سه تکرار تأثیر غلظت‌های مختلف نانوذره دی‌اکسید تیتانیوم (0، 50، 100 و 200 میلی‌گرم بر لیتر) و دو سطح آبیاری (آبیاری معمولی، دور آبیاری 5 با فواصل روزه) مورد بررسی قرار گرفت. پس از 60 روز تغییرات میزان شاخص کلروفیل، سطح برگ، پرولین، پروتئین، کربوهیدرات کل، پارامترهای فلورسانس کلروفیل (FO, FV/FM) و عناصر (پتاسیم، منگنز، آهن و روی) ارزیابی شد. تنش کم آبی به همراه محلول‌پاشی نانوذره دی‌اکسید تیتانیوم میزان شاخص کلروفیل، پرولین، پروتئین، غلظت پتاسیم، روی، آهن، منگنز، سطح برگ افزایش و میزان حداقل فلورسانس کلروفیل کاهش داد.همچنین با افزایش غلظت نانوذره دی‌اکسید تیتانیوم، مقدار کربوهیدرات محلول کل افزایش و تغییری در میزان (FV/FM) نسبت به گیاه شاهد مشاهده نشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of Titanium nano dioxide on physiological particular and chlorophyll fluorescence parameters in Eggplant (Solanum melongena L.) under water deficit stress

نویسندگان [English]

  • Farzad Rasoli 1
  • Fatemeh Abedini 2
  • Seied Morteza Zahedi 3
1 Assistant Professor, Department of Horticultural Sciences and Engineering, Faculty of Agriculture, Maragheh University, Maragheh, East Azerbaijan
2 M.Sc. Alumni, Department of Horticultural Sciences and Engineering, Faculty of Agriculture, Maragheh University, Maragheh, East Azarbaijan
3 Assistant Professor, Department of Horticultural Sciences and Engineering, Faculty of Agriculture, Maragheh University, Maragheh, East Azerbaijan
چکیده [English]

Drought stress is the most important factor limiting growth and production of plants. Titanium dioxide nanoparticles have different effects on morphological, physiological and biochemical properties of the plants. In this study, effects of spraying of Titanium dioxide nanoparticles (0, 50, 100 and 200 mg/l) and two levels of irrigation (normal irrigation, 5-days irrigation intervals) was evaluated through a factorial assay based on randomized block complete design with three replications. Sixty days after starting the assay, changes in chlorophyll index, leaf area, proline, protein, total carbohydrate, chlorophyll fluorescence parameters (Fo, Fv/Fm) and nutrients (potassium, manganese, Iron, and zinc) were measured. Under water deficit stress, spraying of Titanium dioxide nanoparticles, increased the amount of chlorophyll index, proline and protein content, concentrations of potassium, zinc, iron, manganese; leaf surface and reduced the amount of minimum chlorophyll fluorescence. Also, total soluble carbohydrate content increased increased in parallel with titanium dioxide nanoparticles concentration, while the treatment did not affect the amount of FV/FM.

کلیدواژه‌ها [English]

  • Fv/Fm
  • Fo
  • Leaf surface
  • Proline
  • Protein
  • Total soluble carbohydrate

-Abdel Latef A.A, Alhmad M.F.A, & Abdel fattah K.E. (2017). The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) Plants. Journal of Plant Growth Regulation, 36: 60–70.
-Akbari, G.A., Morteza,E., Moaveni,P., Alahdadi,I., Bihamta, M.R. & Hasanloo,T., (2014). Pigments apparatus and anthocyanins reactions of borage to irrigation, methylalchol and titanium dioxide. International Journal of Biosciences, 4: 192-208.
-Amada, A. M & EL-enany, A. E., (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biologia Plantarum, 36, 75- 81.
-Baczek-Kwinta & Kościelniak, J. (2009). The mitigating role of experimental factors in seedling injury and chill-dependent depression of catalase activity in maize leaves. Biologia Plantarum. 53(2), 278-284.
-Bates l.S., waldren R.P. & teare I.D. (1973). Rapid determination of free proline for water- stress studies. Plant and soil, 39, 205- 207.
-Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
-Bredemeier, C. (2005). Laser-induced chlorophyll fluorescence sensing as a tool for site-specific nitrogen fertilizer evaluation under controlled environmental and field conditions in wheat and maize. Ph. D. Thesis. Technical University of Munich, Germany. pp 219.
-Cheruth, A.J., Ksouri, R., Ragupathi, G., Paramasivam, M., Jallali, I., Hameed, J.A., Zhao, C.X., Shao, H.B., & Rajaram, P. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum. 31, 427–436.
-Demmig, B., & Björkman, O. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489–504.
-Dogaaroglu, Z.G., & Koleli, N. (2017). Effects of Tio2 and Zno nanoparticles on germination and antioxidant system of wheat (Triticum Aestivum L.). Applied ecology and environmental research. 15(3), 1499-1510.
-DuBois, M., Gilles,K.A., Hamilton,J.K, Rebers, P.A& Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28, 350-356.
-Flexas,J., Escalona, J.M & Medrano, H. (1999). Water stress induces different levels of photosynthesis & electron transport rate regulation in grapevines. Plant, Cell and Environment, 22, 39–48.
-Foyer, C., Furbank, R., Harbinson, J & Horton, P. (1990). The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynthesis Research, 25, 83–100.
-Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., Yang, F., Wu, C & Yang, P. (2006). Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco-rubisco activase, Biological Trace Element Research,111: 239–253.
-Gao, F., Liu, C., Qu, Zheng, C.L. Yang, Su, F.M. & Hong, F. (2008). Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase?. Biometals, 21: 211- 217.
-Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity, Annual Review of Plant Physiology and Plant Molecular Biology, 51: 463-499.
-Hong, F., Yang, F., Liu, C., Gao, Q., Wan, Z., Gu, F.,Wu, C., Ma, Z., Zhou, J & Yang, P. (2005). Influences of nano-TiO2 on the chloroplast aging of spinach under light, Biol. Trace Elem. Res. 104 (3): 249–260.
-Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effect of nano- TiO2 on photochemical reaction of chloroplasts of spinach, Biological Trace Element Research, 105 (1–3): 269–279.
-Jaleel, C.A., Gopi, R., Sankar B., Gomathinayagam, M & Panneerselvam, R. (2008a). Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comptes Rendus Biologies, 33: 42–47.
-Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Gomathinayagam, M., & Panneerselvam, R. (2008). “Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits”, Colloids and Surfaces B: Biointerfaces, 61(2): 298–303.
-Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R &. Panneerselvam, R, (2007d). Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf. B: Biointerfaces, 60: 201–206.
-Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R & Panneerselvam, R. (2007b). Water deficit stress mitigation by calcium chloride in Catharanthus roseus; effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids Surf. B: Biointerfaces, 60, 110–116.
-Kleiber, T & Markiewicz, B. (2013). Application of “Tytanit” in greenhouse tomato growing. Acta Scientiarum Polonorum Horticulture. 12:117–126.
-Kuzel, S., Hruby, M., Cigler, P., Tlustos, P & Van, N. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Biological Trace Element Research, 91: 179- 190.
-Larue, C., Laurette, Herlin-Boime, J.N. Khodja, H. Fayard, Flank, B.A.M., Brisset, F & Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum): Influence of diameter and crystal phase. Science of the Total Environment, 431:197-208.
-Mahmoodzadeh, H. Aghili, R. Nabavi,M. (2013). Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum). Technical Journal of Engineering and Applied Sciences, 3(14): 1365–1370.
-Mishra, S., Singh, B.R., Singh, A., Keswani, C., Naqvi, Singh, A.H.H.B. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat, PLos One, 9 (5): 1–11.
-Missaoui, T., Smiri, M., Chmingui, H., Hafiane, A. (2017). Effects of nanosized titanium dioxide on the photosynthetic metabolism of fenugreek (Trigonella foenum-graecum L.). Comptes Rendus Biologies Physiology. 340(11-12): 499-511.
-Mohammadi, H., Esmalipour, M and Gheranpaye A. (2016). Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Acta agriculturae Slovenica, 107(2):385-396.
-Nazari, M., MaaliAmiri, R., Mehraban, F.H., & Khaneghah, H.Z. (2012). Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. Russian Journal of Plant Physiology, 59: 183-189.
-Omidi–Tabrizi, A.H. (1998). Correlation between traits and path analysis for grain and oil yield in spring safflower, Seed and Plant Improvement Institute. Karaj. Iran. pp. 36-45.
-Ort, D. R. (2001). When there is too much light. Plant Physiology. 125, 29-32.
-Pais, I., (1983). The biological importance of titanium. Journal of Plant Nutrition, 6: 3-131.
-Percival, G.C, Fraser, G.A, Oxenham, G. (2003). Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. Arboricultural Journal, 29: 61-65.
-Sihachakr, D., Daunay, M.C., Serraf, I., Chaput, M.H., Mussio, I., Haricourt, R., Rotino, L and Ducreux, G. (1994). Somatic hybridization of eggplant (Solanum melongena L.) with its close & wild relatives. Biotechnology in Agriculture and Forestry: Somatic Hybridization in Crop Improvement. Pp. 255- 278.
-Skupie, K and Oszmianski, J. (2007). Influence of titanium treatment on antioxidants and antioxidant activity of strawberries, Acta Scientiarum Polonorum Technologia Alimentaria, 6 (4): 83–94.
-Su, M., Wu, X. Liu, C., Qu, Liu, C.X. Chen, L. Huang, H. & Hong, F. (2007). Promotion of energy transfer & oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biological Trace Element Research, 119: 183-192.
-Tezera, W., Mitchell, V., Driscoll, S.P., Lawlor, D.W. (2002). Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. Journal of Experimental Botany, 53: 1781-1791.
-Dhindsa, R.S. (1987). Glutathione status and protein synthesis during drought and subsequent rehydration in Tortula ruralis. Plant Physiol., 83, 816- 819.
-Yamada, M., Hidaka, T., Fukamachi, H. (1996). Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Horticulturae, 67: 39-48.
-Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C & Yang, P. (2006). Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach, Biological Trace Element Research, 110 (2): 179–190.
-Zayneb, C., Bassem, K., Zeineb, K., Grubb, C., Noureddine, D.D., Hafedh, M & Amine, E. (2015). Physiological responses of fenugreek seedlings and plants treated with cadmium, Environmental Science and Pollution Research, 22: 10679– 10689.
-Zhao, C.X, He, M.R, Wang, Z.L., Wang, Y.F, Lin, Q. (2009). Efects of diferent water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. Com. Ren. Biology, 332: 759-764.
-Zhao, G.Q., Ma, B.L. & Ren, C.Z. (2007). Growth, Gas Exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Journal Crop Science, 41: 123-131.
-Zheng L, Su M, Liu Ch, Chen Li, Huang H, Wu X, Liu X, Yang, Gao F & Hong F. (2007). Effects of Nanoanatase TiO2 on Photosynthesis of Spinach Chloroplasts Under Different Light Illumination. Biological Trace Element Research, 119: 68–76.
-Zheng, L., Hong, F., Lu, S., Liu, C., (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of Spinach, Biological Trace Element Research, 105: 83-91.