-Abdel Latef A.A, Alhmad M.F.A, & Abdel fattah K.E. (2017). The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) Plants. Journal of Plant Growth Regulation, 36: 60–70.
-Akbari, G.A., Morteza,E., Moaveni,P., Alahdadi,I., Bihamta, M.R. & Hasanloo,T., (2014). Pigments apparatus and anthocyanins reactions of borage to irrigation, methylalchol and titanium dioxide. International Journal of Biosciences, 4: 192-208.
-Amada, A. M & EL-enany, A. E., (1994). Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. Biologia Plantarum, 36, 75- 81.
-Baczek-Kwinta & Kościelniak, J. (2009). The mitigating role of experimental factors in seedling injury and chill-dependent depression of catalase activity in maize leaves. Biologia Plantarum. 53(2), 278-284.
-Bates l.S., waldren R.P. & teare I.D. (1973). Rapid determination of free proline for water- stress studies. Plant and soil, 39, 205- 207.
-Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
-Bredemeier, C. (2005). Laser-induced chlorophyll fluorescence sensing as a tool for site-specific nitrogen fertilizer evaluation under controlled environmental and field conditions in wheat and maize. Ph. D. Thesis. Technical University of Munich, Germany. pp 219.
-Cheruth, A.J., Ksouri, R., Ragupathi, G., Paramasivam, M., Jallali, I., Hameed, J.A., Zhao, C.X., Shao, H.B., & Rajaram, P. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum. 31, 427–436.
-Demmig, B., & Björkman, O. (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489–504.
-Dogaaroglu, Z.G., & Koleli, N. (2017). Effects of Tio2 and Zno nanoparticles on germination and antioxidant system of wheat (Triticum Aestivum L.). Applied ecology and environmental research. 15(3), 1499-1510.
-DuBois, M., Gilles,K.A., Hamilton,J.K, Rebers, P.A& Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28, 350-356.
-Flexas,J., Escalona, J.M & Medrano, H. (1999). Water stress induces different levels of photosynthesis & electron transport rate regulation in grapevines. Plant, Cell and Environment, 22, 39–48.
-Foyer, C., Furbank, R., Harbinson, J & Horton, P. (1990). The mechanisms contributing to photosynthetic control of electron transport by carbon assimilation in leaves. Photosynthesis Research, 25, 83–100.
-Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., Yang, F., Wu, C & Yang, P. (2006). Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco-rubisco activase, Biological Trace Element Research,111: 239–253.
-Gao, F., Liu, C., Qu, Zheng, C.L. Yang, Su, F.M. & Hong, F. (2008). Was improvement of spinach growth by nano-TiO2 treatment related to the changes of rubisco activase?. Biometals, 21: 211- 217.
-Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity, Annual Review of Plant Physiology and Plant Molecular Biology, 51: 463-499.
-Hong, F., Yang, F., Liu, C., Gao, Q., Wan, Z., Gu, F.,Wu, C., Ma, Z., Zhou, J & Yang, P. (2005). Influences of nano-TiO2 on the chloroplast aging of spinach under light, Biol. Trace Elem. Res. 104 (3): 249–260.
-Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., Yang, P. (2005). Effect of nano- TiO2 on photochemical reaction of chloroplasts of spinach, Biological Trace Element Research, 105 (1–3): 269–279.
-Jaleel, C.A., Gopi, R., Sankar B., Gomathinayagam, M & Panneerselvam, R. (2008a). Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comptes Rendus Biologies, 33: 42–47.
-Jaleel, C.A., Manivannan, P., Lakshmanan, G.M.A., Gomathinayagam, M., & Panneerselvam, R. (2008). “Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits”, Colloids and Surfaces B: Biointerfaces, 61(2): 298–303.
-Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R &. Panneerselvam, R, (2007d). Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf. B: Biointerfaces, 60: 201–206.
-Jaleel, C.A., Manivannan, P., Sankar, B., Kishorekumar, A., Gopi, R., Somasundaram, R & Panneerselvam, R. (2007b). Water deficit stress mitigation by calcium chloride in Catharanthus roseus; effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids Surf. B: Biointerfaces, 60, 110–116.
-Kleiber, T & Markiewicz, B. (2013). Application of “Tytanit” in greenhouse tomato growing. Acta Scientiarum Polonorum Horticulture. 12:117–126.
-Kuzel, S., Hruby, M., Cigler, P., Tlustos, P & Van, N. (2003). Mechanism of physiological effects of titanium leaf sprays on plants grown on soil. Biological Trace Element Research, 91: 179- 190.
-Larue, C., Laurette, Herlin-Boime, J.N. Khodja, H. Fayard, Flank, B.A.M., Brisset, F & Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum): Influence of diameter and crystal phase. Science of the Total Environment, 431:197-208.
-Mahmoodzadeh, H. Aghili, R. Nabavi,M. (2013). Physiological effects of TiO2 nanoparticles on wheat (Triticum aestivum). Technical Journal of Engineering and Applied Sciences, 3(14): 1365–1370.
-Mishra, S., Singh, B.R., Singh, A., Keswani, C., Naqvi, Singh, A.H.H.B. (2014). Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat, PLos One, 9 (5): 1–11.
-Missaoui, T., Smiri, M., Chmingui, H., Hafiane, A. (2017). Effects of nanosized titanium dioxide on the photosynthetic metabolism of fenugreek (Trigonella foenum-graecum L.). Comptes Rendus Biologies Physiology. 340(11-12): 499-511.
-Mohammadi, H., Esmalipour, M and Gheranpaye A. (2016). Effects of TiO2 nanoparticles and water-deficit stress on morpho-physiological characteristics of dragonhead (Dracocephalum moldavica L.) plants. Acta agriculturae Slovenica, 107(2):385-396.
-Nazari, M., MaaliAmiri, R., Mehraban, F.H., & Khaneghah, H.Z. (2012). Change in antioxidant responses against oxidative damage in black chickpea following cold acclimation. Russian Journal of Plant Physiology, 59: 183-189.
-Omidi–Tabrizi, A.H. (1998). Correlation between traits and path analysis for grain and oil yield in spring safflower, Seed and Plant Improvement Institute. Karaj. Iran. pp. 36-45.
-Ort, D. R. (2001). When there is too much light. Plant Physiology. 125, 29-32.
-Pais, I., (1983). The biological importance of titanium. Journal of Plant Nutrition, 6: 3-131.
-Percival, G.C, Fraser, G.A, Oxenham, G. (2003). Foliar salt tolerance of Acer genotypes using chlorophyll fluorescence. Arboricultural Journal, 29: 61-65.
-Sihachakr, D., Daunay, M.C., Serraf, I., Chaput, M.H., Mussio, I., Haricourt, R., Rotino, L and Ducreux, G. (1994). Somatic hybridization of eggplant (Solanum melongena L.) with its close & wild relatives. Biotechnology in Agriculture and Forestry: Somatic Hybridization in Crop Improvement. Pp. 255- 278.
-Skupie, K and Oszmianski, J. (2007). Influence of titanium treatment on antioxidants and antioxidant activity of strawberries, Acta Scientiarum Polonorum Technologia Alimentaria, 6 (4): 83–94.
-Su, M., Wu, X. Liu, C., Qu, Liu, C.X. Chen, L. Huang, H. & Hong, F. (2007). Promotion of energy transfer & oxygen evolution in spinach photosystem II by nano-anatase TiO2. Biological Trace Element Research, 119: 183-192.
-Tezera, W., Mitchell, V., Driscoll, S.P., Lawlor, D.W. (2002). Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. Journal of Experimental Botany, 53: 1781-1791.
-Dhindsa, R.S. (1987). Glutathione status and protein synthesis during drought and subsequent rehydration in Tortula ruralis. Plant Physiol., 83, 816- 819.
-Yamada, M., Hidaka, T., Fukamachi, H. (1996). Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence. Scientia Horticulturae, 67: 39-48.
-Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C & Yang, P. (2006). Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach, Biological Trace Element Research, 110 (2): 179–190.
-Zayneb, C., Bassem, K., Zeineb, K., Grubb, C., Noureddine, D.D., Hafedh, M & Amine, E. (2015). Physiological responses of fenugreek seedlings and plants treated with cadmium, Environmental Science and Pollution Research, 22: 10679– 10689.
-Zhao, C.X, He, M.R, Wang, Z.L., Wang, Y.F, Lin, Q. (2009). Efects of diferent water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. Com. Ren. Biology, 332: 759-764.
-Zhao, G.Q., Ma, B.L. & Ren, C.Z. (2007). Growth, Gas Exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Journal Crop Science, 41: 123-131.
-Zheng L, Su M, Liu Ch, Chen Li, Huang H, Wu X, Liu X, Yang, Gao F & Hong F. (2007). Effects of Nanoanatase TiO2 on Photosynthesis of Spinach Chloroplasts Under Different Light Illumination. Biological Trace Element Research, 119: 68–76.
-Zheng, L., Hong, F., Lu, S., Liu, C., (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of Spinach, Biological Trace Element Research, 105: 83-91.