اثر تنش دمای بالا و پایین بر تغییرات رشد، فتوسنتز و فعالیت آنتی‌اکسیدانی گوجه‌فرنگی در مرحله رشد رویشی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 دانشجوی کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

هدف از این آزمایش بررسی اثر تنش دمای بالا و پایین بر تغییرات رشد، فتوسنتز و فعالیت آنتی‌اکسیدانی گوجه‌فرنگی در مرحله رشد رویشی بود. گیاهان رشد کرده در سیستم هیدروپونیک تحت تأثیر تنش دمایی 40 و 10 درجه سانتی‌گراد به‌مدت 24 ساعت قرار گرفتند و با گیاهان شاهد در دمای گلخانه 2±25 درجه سانتی‌گراد مقایسه شدند. همه گیاهان پس از اعمال تنش به گلخانه با شرایط بهینه منتقل شدند و پس از 10 روز دوباره فاکتورهای رشد بررسی شد. نتایج مقایسه‌ای بین این سه دما نشان داد که بیشترین میزان وزن تر شاخساره در تیمار شاهد مشاهده شد. در شرایط تنش دمای بالا، 7/56 درصد کاهش وزن تر نسبت به تیمار شاهد و در تنش دمای پایین 3/65 درصد کاهش مشاهده شد. وزن تر ریشه نیز به‌طور مشابهی در تیمار شاهد بیشترین میزان بود و تنش گرمایی، 45 درصد و تنش سرمایی، 6/64 کاهش را نسبت به شرایط دمای بهینه نشان داد. حجم ریشه با اعمال تنش گرمایی و سرمایی کاهش معنی‌داری نشان داد و میزان نرخ فتوسنتز در شرایط معمولی گلخانه بیشترین میزان و در شرایط تنش گرمایی کمترین میزان را نشان داد. به‌طورکلی می‌توان بیان کرد که تنش دمایی در این مطالعه صفات رشدی و فتوسنتزی را بیشتر از صفات آنتی‌اکسیدانی تحت تأثیر قرار داد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of High and Low Temperature Stress on Growth, Photosynthesis and Antioxidant Activity in Vegetative Growth Stage of Tomato

نویسندگان [English]

  • Maryam Haghighi 1
  • Reza Abolghasemi 2
1 Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture, Isfahan University of Technology, Isfahan. Iran
2 M.Sc. Student, Department of Horticulture Sciences, Faculty of Agriculture, Isfahan University of Technology, Isfahan. Iran
چکیده [English]

The aim of this was to investigate the effect of high and low temperature stress on growth, photosynthesis and antioxidant changes in vegetative growth stage of tomato. Tomato plants which were grown in hydroponics system exposed to temperature stress at 40 ºC and 10 ºC compared with plants grown in the greenhouse at optimum temperature of 25±2 as control. All plants were transfer to optimum condition in the greenhouse after stress treatments and growth parameters were measured after 10 days. The results of the comparison between these three temperatures showed that the highest fresh weight of shoot was observed at control treatment. In high temperature stress conditions observed 56.7% decrease fresh weight compared to control treatment and in low temperature stress conditions observed 65.3 decrease. Similarly, fresh weight of root was highest in control treatment and heat stress 45% and low temperature stress 64.6% showed decrease compared to optimum temperature conditions. Root volume was reduced by temperature stress significantly and photosynthesis rate was the highest in control treatment and lowest under high temperature stress. In general, it can be stated that temperature stress in this study affected growth and photosynthetic traits more than antioxidant traits.

کلیدواژه‌ها [English]

  • Antioxidant
  • Chlorophyll
  • Phenol
  • Stomatal conductance
  • Transpiration

References

-          Azizpour, K., Shakiba, M. R., KhoshKholg, S. N. A., Alyari, H., Mogaddam, M., Esfandiari, E. & Pessarakli, M. (2010). Physiological response of spring durum wheat genotypes to salinity. Journal of Plant Nutrition, 33, 859-873.

-          Baczekkwinta, R., Filek, W., Grzesiak, S. & Hura, T. (2006). The effect of soil drought and rehydration on growth and anti-oxidative activity in flag leaves of triticale. Biological Plant, 50, 55-60.

-          Badea, C. & Basu, S. K. (2009). The effect of low temperature on metabolism of membrane lipids in plants and associated gene expression. Plant Omics Journal, 2, 78-84.

-          Blum, A. (2005). Drought resistance, water use efficiency, and yield potential are they compatible, dissonant, or mutually exclusive? Australian Agricultural Research, 56, 1159-1168.

-          Brown, R. S., Oosterhuis, D. M., Coker, D. L., & Fowler, L. (2003). The dynamics of dry matter partitioning in the cotton boll of modern and obsolete cultivars. In: D. A. Richter (Ed.), Proceedings Beltwide Cotton Conferences, National Cotton Council, Memphis, Tenn (pp. 1886-1889).

-          Cakmak, I. (2005). Role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168, 521-530.

-          Clarke, J. M. & McCaig, T. N. (1982). Excised leaf water retention capacity as an indicator of drought resistance of Triticum genotypes. Plant Science, 62, 571-576.

-          Djanaguiraman, M., Prasad, A. & Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 48, 999-1007.

-          Doshi, R., Braida, W., Christodoulatos, C., Wazne, M. & O’connor, G. (2008). Nano aluminum: Transport through sand columns and environmental effects on plant and soil communities. Environmental Research, 106, 296-303.

-          Filippi, L. D., Fournier, M., Cameroni, E., Linder, P., Virgilio, C. D., Foti, M. & Deloche, O. (2007). Membrane stress is coupled to a rapid translational control of gene expression in chlorpromazine-treated cells. Current Genetics, 52, 171-185.

-          Firon, N., Shaked, R., Peet, M. M., Pharr, D. M., Zamski, E., Rosenfeld, K., Ahan., L. &. Pressman, E. (2006). Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Scientia Horticalturae, 109, 212-217.

-          Ghorbani, A., Zarinkamar, F. & Fallah, A. (2009). Effect chilling stress on morphologic and physiologic of two variety of rice. Journal of Crop Breeding, 1(2), 50-66.

-          Haghighi, M., Abolghasemi, R. & Da Silva, J. A. (2014). Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Scientia Horticalturae, 178, 231-240.

-          Hall, A. E. (2004). Mitigation of stress by crop management. Available online with updates at http://www. plantstress. com/Articles/heat_m/heat_m. htm.

-          Hasanuzzaman, M., Hossain, M. A., Teixeira da Silva, J.A., & Fujita, M. (2012). Plantresponses and tolerance to abiotic oxidative stress: antioxidant defenses are a key factors. In: V. Bandi., A. K. Shanker., C. Shanker. & M. Mandapaka. (Eds.), Crop stress and its management: perspectives and strategies. Springer, Berlin, (pp. 261-316). Springer, Dordrecht.‏

-          Hasibi, P., Moradi, F. & Nabipour, M. (2007). Screening rice genotype for resistance to low temperature with using chlorophyll florescence. Iranian Agronomic Science Journal, 9, 14-31. (In Farsi).

-          Heidarvand, L. & Maali Amiri, R. (2010). What’s happens in plant molecular responses to cold stress? Acta Physiologiae Plantarum, 32, 419-431.

-          Hura, T., Grzesiak, S., Hura, K., Thiemt, E., Tokarz, K. & Wedzony, M. (2007). Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: Accumulation of ferulic acid. Annals of Botany, 100, 767-775.

-          Jain, M., Nandwal, A. S., kundu, B. S., kumar, B., Mann, A. & kukreja, S. (2006). Water relations, activities of antioxidants, ethylene evolution and membrane integrity of pigeconpea roots as affected by soil moisture. Biologia plantarum, 50(2), 303-306.

-          Kai, H. & Iba, K. (2014). Temperature stress in plants. eLS, http://dx.doi.org/ 10.1002/9780470015902.a0001320.pub2.

-          Karami, F. (2013). Physiological response of plants to drought stress. Olive Magazine, 128, 34-40.

-          Lin, K. H., Chao, P. Y., Yang, C. M., Cheng, W. C., Lo, H. F. & Chang, T. R. (2006). The effects of flooding and drought stresses on the antioxidant constituents in sweet potato leaves. Botanical Studies, 47, 417-426.

-          Lobnanijoghshahi, M. (2007). Evaluation of morpho-physiological traits related to drought tolerance in Triticale. MS Thesis Plant Breeding, Faculty of Agriculture, University of Technology.

-          Mahajan, S. & Tuteja, N. (2006). Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444, 139-158.

-          Mohsenzadeh, S. (2006). Physiological and molecular responses of Aeluropuslagopoides (Poaceae) to water deficit. Journal of Environment Expriment Botany, 56, 314-322.

-          Oktay, M., Gulcin, I. & Kufrevioglu, O. I. (2003). Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. LWT- Food Science and Technology, 36, 263-271.

-          Piterkova, J., Luhova, L., Mieslerova, B., Lebeda, A., & Petrivalsky, M., (2013). Nitric oxideand reactive oxygen species regulate the accumulation of heat shock proteins intomato leaves in response to heat shock and pathogen infection. Plant Science, 207, 57-65.

-          Prasad, P. V. V., Pisipati, S. R., Mutava, R. N. & Tuinstra, M. R. (2008). Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Science, 48, 1911-1917.

-          Raven, J. A. (2003). Cycling silicon: the role of accumulation in plants. New Phytologist Journal, 158, 419-30.

-          Reddy, K. R. & Karni, V. G. (2007). Screening capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Scientia Horticalturae, 112, 130-135.

-          Rivell, A. R., De Maria, S., pizza, S. & Gherbin, P. (2010). Growth and physiological response of hydroponically grown sunflower as affected by salinity and magnesium levels. Journal of Plant Nutrition, 33, 1307-1323.

-          Sairam, R. & Srivastava, G. (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science, 162, 897-904.

-          Saranga, Y., Jiang, C. X., Wright, R. J., Yakir, D. & Paterson, A. H. (2004). Genetic dissection of cotton physiological responses to arid conditions and their inter-relationships with productivity. Plant Cell Environment, 27, 263-277.

-          Schwambach, J., M.Ruedell, C., R.Almeida, M., Penchel, R. M., Dearaujo, E. F. & FettNeto, A. G. (2008). Adventitious rooting of Eucalyptus glabus×maidenni mini cutting derived from mini stumps grown in sand bed and intermittent flooding trays: a comparative study. New Forests, 36, 261-271.

-          Siddique, M. R. B., Hamid, A. & Islam M. S. (2000). Drought stress effect on water relation of whet. Botany Bull Academic, 41, 35-39.

-          Siosemarde, A., Ahmadi, A., Pustini, K. & Ebrahimzadeh, H. (2004). Stomatal and non-stomatal factors controlled photosynthesis and their connection with drought resistant in wheat cultivars. Journal of Iranian Agricultural Sciences, 35, 93-106. (In Farsi).

-          Tóth, S. Z., Schansker, G., & Strasser, R. J. (2007). A noninvasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynthesis Research, 93, 193-203.

-          Xin, Z. & Browse, J. (2000). Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environment, 23, 893-902.

-          Xin, Z., Mandaokar, A., Chen, J., Last, R. L. & Browse, J. (2007). Arabidopsis ESK1 encodes a novel regulator of freezing Tolerance. The Plant Journal, 49, 786-799.

-          Yadeghari, L. Z., Heidari, R. &. Carapetian. J. (2008). The influence of cold acclimation on proline, malondialdehyd (MDA), Total protein and pigments contents in soybean (Glycine max) seedlings. Research Journal of Biological Sciences, 3, 74-79.

-          Yan, S. P., Zhang, Q. Y., Tang, Z. C., Su, W. A., & Sun, W. N. (2006). Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & cellular proteomics, 5(3), 484-496.

-          Zhao-Shi, X., Lan-Qin, X., Ming, C., Xian-Guo, C. C., Rui-Yue, Z., Lian-Cheng, L., Yun- Xiang, Z., Yan, L., Hi-Yong, N., Li, L., Zhi-Gang, Q. & You-Zhi, M. (2007). Isolation and molecular characterization of the Triticum aestivum L. Ethylene responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Molecular Biology, 65, 719-732.