تأثیر متا‌سیلیکات سدیم بر کاهش آسیب‌های اکسایشی در گیاه کاهو (Lactuca sativa cv. siahoo) تحت تنش سمیت منگنز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌‌ارشد علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران

2 استادیار گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران

3 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه مراغه، مراغه، ایران

4 استادیار گروه زیست‌شناسی، دانشکده علوم پایه، دانشگاه مراغه، مراغه، ایران

10.22034/iuvs.2020.105078.1040

چکیده

منگنز جزء عناصر کم‌مصرف برای گیاهان بوده و در حقیقت به‌عنوان یک آلاینده‌‌ی فلزی به‌حساب نمی‌آید. سمیت منگنز در بعضی خاک‌های کشاورزی به‌دلیل احیای بیش از حد آن منجر به اثرات نامطلوب در گیاهان می‌شود. سیلیسیم به‌عنوان عنصر کاهنده‌‌ی تنش و جلوگیری از بروز اثرات سمی بعضی عناصر شناخته شده است. به‌منظور بررسی اثرات سیلیسیم و منگنز در برگ گیاه کاهو رقم سیاهو آزمایشی با سه سطح منگنز (5/0، 5/2 و 0/5 میلی‌گرم در لیتر) از منبع سولفات منگنز و سه سطح سیلیسیم (صفر، 14 و 28 میلی‌گرم در لیتر) از منبع متاسیلیکات سدیم به‌صورت فاکتوریل و در قالب طرح کاملاً تصادفی به‌صورت کشت هیدروپونیک در گلخانه‌ی تحقیقاتی دانشکده‌ کشاورزی مراغه صورت گرفت. نتایج نشان داد که با افزایش غلظت منگنز در محلول غذایی میزان مالون‌دی‌آلدئید، کاتالاز، آسکوربات پراکسیداز و پراکسید هیدروژن افزایش و پروتئین محلول کل، وزن تر و خشک گیاه کاهش یافت. بیشترین کاهش وزن تر و خشک مربوط به تیمار پنج میلی‌گرم در لیتر منگنز بود. کاربرد متاسیلیکات سدیم به‌طور معنی‌داری میزان مالون‌دی‌آلدئید و پراکسید هیدروژن را کاهش و فعالیت آنزیم کاتالاز، آسکوربات پراکسیداز، پروتئین محلول کل، وزن تر و خشک گیاه را افزایش داد. به‌طور کلی کاربرد غلظت‌های بالای منگنز در محلول غذایی باعث کاهش رشد و عملکرد شده و در مقابل کاربرد سیلیسیم باعث تعدیل اثرات سمی منگنز و افزایش عملکرد می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Sodium Metasilicate on Reduction of Oxidative Damages in Lettuce (Lactuca sativa cv. ‘siahoo’) under Manganese Toxicity Stress

نویسندگان [English]

  • Davood Rafeie Koshksaray 1
  • Farhad Behtash 2
  • Seyyed Bahman Mosavi Mosavi 3
  • Ahmad Aghaee 4
1 M.Sc. Graduate, Department of Horticultural Sciences and Engineering, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
2 Assistant Professor, Department of Horticultural Sciences and Engineering, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
3 Associate Professor, Department of Soil Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
4 Assistant Professor, Department of Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
چکیده [English]

Manganese is a microelement for plants and is not actually counted as a metal pollutant. Manganese toxicity in some agricultural soils due to its excessive regeneration leads to undesirable symptoms in plants. Silicon is well known as reducing stress and toxic effects of some elements. A hydroponic experiment was conducted to evaluate the effect of silicon and manganese on leave of lettuce (Lactuca sativa L. cv. Siahoo) in greenhouse of Agricultural Faculty of Maragheh, Iran in 2016. The experimental design was completely randomized factorial design with three replicates. The treatments were three level of manganese (0.5, 2.5 and 5 mg/l) from MnSO4 source and three level of silicon (0, 14 and 28 mg.L-1) from Sodium metasilicate source. The results showed that with increasing manganese concentration, the levels of malondialdehyde, catalase, ascorbate peroxidase and hydrogen peroxide increased and total protein and fresh weight and dry weight of plant decreased. The highest plant fresh and dry weight loss was observed in 5 mg.L-1 manganese. Sodium metasilicate significantly reduced the level of malondialdehyde and hydrogen peroxide and increased the activity of the enzyme catalase, ascorbate peroxidase, total protein, plant fresh and dry weight. In general, application of high concentrations of manganese in nutrient solution decreases the plant growth and yield, while silicon application reduce the toxic effects of manganese and enhances the plant yield.

کلیدواژه‌ها [English]

  • Hydrogen peroxide
  • Manganese stress
  • Silicon
  • malondialdehyde
-          Achary, V. M., Jena, S., Panda, K. K. & Panda, B. B. (2008). Aluminium induced oxidative stress and DNA damage in root cells of Allium cepa L. Ecotoxicology and Environmental Safety, 70(2), 300-310.
-          Al-aghabary, K., Zhu, Z. & Shi, Q. (2005). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27(12), 2101-2115.
-          Ayvaz, M., Avci, M. K., Yamaner, C., Koyuncu, M., Guven, A. & Fagerstedt, K. (2013). Does excess boron affect the malondialdehyde levels of potato cultivars. EurAsian Journal of BioSciences, 7, 47-53.
-          Balakhnina, T. & Borkowska, A. (2013). Effects of silicon on plant resistance to environmental stresses. International Agrophysics, 27(2), 225-232.
-          Bidwell, S. D., Woodrow, I. E., Batianoff, G. N. & Sommer-Knudsen, J. (2002). Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Functional Plant Biology, 29(7), 899-905.
-          Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248-254.
-          Coolong, T. W., Randle, W. M., Toler, H. D. & Sams, C. E. (2004). Zinc availability in hydroponic culture influences glucosinolate concentrations in Brassica rapa. Hortscience, 39(1), 84-86.
-          Crossgrove, J. & Zheng, W. (2004). Manganese toxicity upon overexposure. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance in Vivo, 17(8), 544-553.
-          Dazy, M., Jung, V., Ferard, J. F. & Masfaraud, J. F. (2008). Ecological recovery of vegetation on a coke-factory soil: role of plant antioxidant enzymes and possible implications in site restoration. Chemosphere, 74(1), 57-63.
-          Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z., Holzer, R. & Feller, U. (2004). Biochemical changes in barley plants after excessive supply of copper and manganese. Environmental and Experimental Botany, 52(3), 253-266.
-          El-Feky, S. S., El-Shintinawy, F. A. & Shaker, E. M. (2014). Role of CaCl2 and salicylic acid on metabolic activities and productivity of boron stressed barley (Hordeum vulgare L.). International Journal of Current Microbiology and Applied Scinces,3, 368-380.
-          Epstein, E. (1999). Silicon. Annual Review of Plant Biology, 50(1), 641-664.‏
-          Eraslan, F., Inal, A., Pilbeam, D. J. & Gunes, A. (2008). Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regulation, 55(3), 207-219.
-          Feng, J. P., Shi, Q. H. & Wang, X. F. (2009). Effects of exogenous silicon on photosynthetic capacity and antioxidant enzyme activities in chloroplast of cucumber seedlings under excess manganese. Agricultural Sciences in China, 8(1), 40-50.
-          Gardea-Torresdey, J. L., Peralta-Videa, J. R., De La Rosa, G. & Parsons, J. G. (2005). Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordination Chemistry Reviews, 249(17), 1797-1810.
-          Gratao, P. L., Polle, A., Lea, P. J. & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32(6), 481-494.
-          Gunes, A., Inal, A., Alpaslan, M., Cicek, N., Guneri, E., Eraslan, F. & Guzelordu, T. (2005). Effects of exogenously applied salicylic acid on the induction of multiple stress tolerance and mineral nutrition in maize (Zea mays L.). Archives of Agronomy and Soil Science, 51(6), 687-695.
-          Guntzer, F., Keller, C. & Meunier, J. D. (2012). Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development, 32(1), 201-213.
-          Hagar, H. A., Ueda, N. O. & Shah, S. V. (1996). Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. American Journal of Physiology-Renal Physiology, 271(1), 209-215.
-          Haghighi, M. & Pessarakli, M. (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161, 111-117.
-          Heath, R. L. & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198.
-          Hu, Y., Ge, Y., Zhang, C., Ju, T. & Cheng, W. (2009). Cadmium toxicity and translocation in rice seedlings are reduced by hydrogen peroxide pretreatment. Plant Growth Regulation, 59(1), 51-61.
-          Jiang, Y. & Huang, B. (2001). Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science, 41(2), 436-442.
-          Jhanshah, S. & Najafi, N. (2011). Silicon functions in olive plant. Zeitun, 31, 8-16. (In Farsi)
-          Jones Jr, J. B. (2012). Plant nutrition and soil fertility manual. CRC press.
-          Khudsar, T. & Iqbal, M. (2001). Cadmium-induced changes in leaf epidermes, photosynthetic rate and pigment concentrations in Cajanus cajan. Biologia Plantarum, 44(1), 59-64.
-          Liang, Y. (1999). Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant and Soil, 209(2), 217-224.
-          Liang, Y., Wong, J. W. C. & Wei, L. (2005). Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere, 58(4), 475-483.
-          Luna, C. M., Pastori, G. M., Driscoll, S., Groten, K., Bernard, S. & Foyer, C. H. (2004). Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. Journal of Experimental Botany, 56(411), 417-423.
-          Ma, J. F. & Yamaji, N. (2006). Silicon uptake and accumulation in higher plants. Trends in Plant Science, 11(8), 392-397.
-          Metwally, A., Finkemeier, I., Georgi, M. & Dietz, K. J. (2003). Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 132(1), 272-281.
-          Mittler, R., Vanderauwera, S., Gollery, M. & Van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9(10), 490-498.
-          Mou, B. (2008). Lettuce. In: J. Prohens & F. Nuez (Eds.), Handbook of Plant Breeding. Vegetables I. Asteraceae, Brassicaceae, Chenopodiaceae and Cucurbitaceae. (pp. 75-116). Springer Science.
-          Mussa, H. R. (2006). Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). Agriculture and Biology Journal,2, 293-297.
-          Nicolle, C., Cardinault, N., Gueux, E., Jaffrelo, L., Rock, E., Mazur, A., Amouroux, P. & Remesy, C. (2004). Health effect of vegetable-based diet: lettuce consumption improves cholesterol metabolism and antioxidant status in the rat. Clinical Nutrition, 23, 605-614.
-          Palma, J. M., Sandalio, L. M., Corpas, F. J., Romero-Puertas, M. C., McCarthy, I. & Luis, A. (2002). Plant proteases, protein degradation, and oxidative stress: role of peroxisomes. Plant Physiology and Biochemistry, 40, 521-530.
-          Peyvast, G. H, (2006). Olericulture. Daneshpazir Publications Press. (In Farsi).
-          Rady, M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Scientia Horticulturae, 129(2), 232-237.‏
-          Ranjan, R., Bohra, S. P. & Jeet, A. M. (2001). Book of plant senescence. Jodhpur, Agro bios New York.
-          Romero-Aranda, M. R., Jurado, O. & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology, 163(8), 847-855.
-          Salehipour, M., Ghorbani, H., Kheirabadi, H. & Afyuni, M. (2015). Health risks from heavy metals via consumption of cereals and vegetables in Isfahan Province, Iran. Human and ecological risk assessment. An International Journal, 21(7), 1920-1935.
-          Shabankhani, B., Azadbakht, M., Shokrzadeh Lemoky, M. & Bahramighane, S. (2001). Measurment of Pb and Cd in spinach and radish vegetables Sary city. Journal of Mazandaran University of Medical Sciences, 30, 27-30. (In Farsi)
-          Shi, X., Zhang, C., Wang, H. & Zhang, F. (2005). Effect of Si on the distribution of Cd in rice seedlings. Plant and Soil, 272(1-2), 53-60.
-          Shi, Q. & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63(1-3), 317-326.
-          Valance, J., Deniel, F., Le Floch, G., Guerin-dubrana, L., Blancard, D. & Rey, P. (2011). Pathogenic and beneficial microorganism in soilless cultures. Agronomy for Sustainable Development, 2, 711-726.
-          Velikova, V., Yordanov, I. & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59-66.
-          Veselov, D., Kudoyarova, G., Symonyan, M. & Veselov, S. (2003). Effect of cadmium onion uptake, transpiration and cytokinin content in wheat seedlings. Bulg Journal Plant Physiology, 29(3-4), 353-359.
-          Villa-Castorena, M., Ulery, A. L., Valencia, E. A. C. & Remmenga, M. D. (2003). Division S-4-soil fertility and plant nutrition. Soil Science Society of America Journal, 67, 1781-1789.
-          Wang, L., Zhou, Q., Ding, L. & Sun, Y. (2008). Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. Journal of Hazardous Materials, 154(1-3), 818-825.
-          Zhu, Z., Wei, G., Li, J., Qian, Q. & Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527-533.