تأثیر بور و اسید سالیسیلیک بر برخی خصوصیات رویشی و بیوشیمیایی کاهو (Lactuca sativa L.) در سیستم هیدروپونیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 استادیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

3 دانشیار گروه علوم باغبانی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

10.22034/iuvs.2020.122347.1084

چکیده

بور یک عنصر ریز‌مغذی ضروری در گیاهان علی است ولی بیش‌بود آن در خاک و آب آبیاری مشکلات جدی در رشد و تولید گیاهان ایجاد می‌کند. از آن‌جایی‌ که اسید سالیسیلیک به‌عنوان یک تنظیم‌کننده رشد گیاه محسوب می‌شود، کاربرد برون‌زای آن ممکن است اثرات نامطلوب بیش‌بود بور در کاهو (Lactuca sativa L.) را تعدیل نماید. این آزمایش به‌منظور بررسی تأثیر بور و اسید سالیسیلیک بر خصوصیات مورفولوژیکی و بیوشیمیایی کاهو رقم، به‌صورت فاکتوریل بر پایه طرح کاملاً تصادفی با سه تکرار در سال 1396 اجرا شد. تیمار‌های آزمایشی شامل سه سطح اسید سالیسیلیک (صفر، 5/0 و یک میلی‌مولار) و بور در سه سطح (05/0، 5/0 و یک میلی‌مولار) بودند. نتایج نشان داد که با افزایش غلظت بور در محلول غذایی، وزن تر و خشک برگ، سطح برگ، محتوای کلروفیل a، b، کل و کاروتنوئید برگ کاهش یافت. بیشترین مقدار بور برگ و محتوای پرولین، قند محلول، فنول کل و نشت الکترولیت در گیاهان تغذیه‌شده با غلظت یک میلی‌مولار بور و یک میلی‌مولار اسید سالیسیلیک و کمترین مقدار در تیمار شاهد بور و اسید سالیسیلیک به‌دست آمد. بیشترین فعالیت آنزیم پراکسیداز و آسکوربات پراکسیداز به‌ترتیب در غلظت یک و 5/0 میلی‌مولار بور به ثبت رسید. افزایش غلظت بور در محلول غذایی از 05/0 میلی‌مولار به یک میلی‌مولار، مقدار بور برگ را 3/9 برابر افزایش داد. نتایج این آزمایش نشان داد که بیش‌بود بور، رشد گیاه را به‌طور معنی‌داری کاهش داد و محلول‌پاشی با اسید سالیسیلیک نتوانست سمیّت بور در کاهو را تعدیل نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Boron and Salicylic Acid on Some Vegetative and Biochemical Traits of Lettuce (Lactuca sativa L.) in Hydroponic Syste

نویسندگان [English]

  • Ebrahim Molaei lourd 1
  • Rasoul Azarmi 2
  • Behrooz Esmaielpour 3
1 M.Sc. Graduated Student of Horticulture, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
2 Assistant Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
3 Associate Professor, Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardebil, Iran
چکیده [English]

Boron (B) is an essential microelement in higher plants, but excessive amount of B in the soil or in irrigation water create serious problems on plant growth, production and human health. Salicylic Acid (SA) plays a key role in establishing and signaling a defence response against various environmental stresses. Exogenous application of SA may alleviate adverse effects of B toxicity in lettuce )Lactuca sativa L.( In this experiment, in order to evaluate effect of B and SA on morphological and biochemical traits of lettuce, an experiment was carried out as factorial based on completely randomized design with three replications in 2017. Experimental treatments included three levels of SA (0, 0.5 and 1 mM) and three levels of B (0.05, 0.5 and 1 mM). The results revealed that with increasing B concentration in nutrient solution decreased leaf fresh and dry weight, leaf area, and chlorophyll a, b, total and carotenoid contents. The highest contents of proline, soluble sugar, total phenol and electrolyte leakage were obtained in plants fed with concentration of 1 mM B and SA, and the lowest value in B and SA control treatments. The maximum of ascorbate peroxidase (APX) and peroxidase (POX) activity in the leaves was recorded at concentration of 0.5 and 1 mM B in solution, respectively. The increase in B concentration in the nutrient solution from 0.05 mM to 1 mM the leaf B content increased 9.3 times. The results this experiment showed that B excess significantly decreased growth and yield of lettuce and SA foliar application cannot alleviate B toxicity in lettuce.

کلیدواژه‌ها [English]

  • Ortho-hydroxy benzoic acid
  • growth
  • Boron toxicity
  • lettuce
-          Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. polyphenol oxidase in Beta vulgaris. Plant Physiology, 24(1), 1-15.
-          Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207.
-          Belkadhi, A., De Haro, A., Soengas, P., Obregon, S., Cartea, M. E., Chaibi, W. & Djebali, W. (2014). Salicylic acid increases tolerance to oxidative stress induced by hydrogen peroxide accumulation in leaves of cadmium-exposed flax (Linum usitatissimum L.). Journal of Plant Interactions, 9(1), 647-654.‏
-          Beltrano, J. & Ronco, M. G. (2008). Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Journal of Plant Physiology, 20(1), 29-37.
-          Cervilla, L. M., Blasco, B., Rios, J. J., Rosales, M. A., Sanchez-Rodriguez, E., Rubio-Wilhelmi, M. M. & Ruiz, J. M. (2012). Parameters symptomatic for boron toxicity in leaves of tomato plants. Journal of Botany Hindawi Publishing Corporation, 10, 1-17.
-          Chaparzadeh, N. & Hosseinzad-Behboud, E. (2015). Evidence for enhancement of salinity induced oxidative damages by salicylic acid in radish (Raphanus sativus L.). Journal of Plant Physiology & Breeding, 5(1), 23-33.
-          Chatzissavvidis, C. & Therios, I. (2010). Response of four olive (Olea europaea L.) cultivars to six B concentrations: Growth performance, nutrient status and gas exchange parameters. Scientia Horticulturae, 127(1), 29-38.
-          El-Shazoly, R. M., Metwally, A. A. & Hamada, A. M. (2019). Salicylic acid or thiamin increases tolerance to boron toxicity stress in wheat. Journal of Plant Nutrition, 42(7), 702-722.
-          Eraslan, F., Inal, A., Gunes, A. & Alpaslan, M. (2007). Boron toxicity alters nitrate reductase activity, proline accumulation, membrane permeability, and mineral constituents of tomato and pepper plants. Journal of Plant Nutrition, 30(6), 981-994.‏
-          Gratao, P. L., Polle, A., Lea, P. J. & Azevedo, R. A. (2005). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32(6), 481-494.
-          Han, S., Chen, L. S., Jiang, H. X., Smith, B. R., Yang, L. T. & Xie, C. Y. (2008). Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. Journal of Plant Physiology, 165(13), 1331-1341.‏
-          Hemeda, H. M. & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55(1), 184-185.
-          Herrera-Rodriguez, M. B., Gonzalez-Fontes, A., Rexach, J., Camacho-Cristobal, J. J., Maldonado, J. M. & Navarro-Gochicoa, M. T. (2010). Role of boron in vascular plants and response mechanisms to boron stresses. Plant Stress, 4(2), 115-122.
-          Hoagland, D. R. & Arnon, D. I. (1950). The water-culture method for growing plants without soil. California Agriculture Experimental Station Circular, 374, 1-32.
-          Horvath, E., Szalai, G. & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26(3), 290-300.
-          Irigoyen, J. J., Einerich, D. W. & Sanchez‐Diaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa L.) plants. Physiologia Plantarum, 84(1), 55-60.
-          Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A. & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6, 1-17.
-          Lichtenthaler, H. K. & Wellburn, A. R. (1983). Determination of Total Carotenoids and Chlorophylls a and b Leaf Extracts in Different Solvents. Biochemical Society Transactions, 11, 591-592.
-          Marinova, D., Ribarova, F. & Atanassova, M. (2005). Total phenolics and total flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, 40(3), 255-260.‏
-          Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9), 405-410.‏
-          Nakano, Y. & Asada, K. (1987). Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by mono dehydro ascorbate radical. Plant and Cell Physiology, 28(1), 131-140.
-          Pancheva, T. V., Popova, L. P. & Uzunova, A. N. (1996). Effects of salicylic acid on growth and photosynthesis in barley plants. Journal of Plant Physiology, 149, 57-63.‏
-          Papadakis, I. E., Dimassi, K. N., Bosabalidis, A. M., Therios, I. N., Patakas, A. & Giannakoula, A. (2004). Boron toxicity in ‘Clementine’mandarin plants grafted on two rootstocks. Plant Science, 166(2), 539-547.
-          Rivas-San Vicente, M. & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321-3338.‏
-          Sahin, S., Klsa, D., Goksu, F. & Gebologlu, N. (2017). Effects of boron applications on the physiology and yield of lettuce. Annual Research & Review in Biology, 21(6), 1-7.
-          Sairam, R. K. & Srivastava, G. C. (2001). Water stress tolerance of wheat (Triticum aestivum L.): variations in hydrogen peroxide accumulation and antioxidant activity in tolerant and susceptible genotypes. Journal of Agronomy and Crop Science, 186(1), 63-70.
-          Sayyadi, E., Ahmadi, J., Asghari, B. & Hosseini, S. M, (2015). Evaluation of the effects of drought and salinity on the phenolic compounds of the medicinal plant (Thymus vulgaris L.). Journal of Ecophytochemistry of Medicinal Plants, 2(4), 50-61. (In Farsi)
-          Sharma, P. & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17(1), 35-52.
-          Siddiqui, M. H., Al-Whaibi, M. H., Sakran, A. M., Ali, H. M., Basalah, M. O., Faisal, M. & Al-Amri, A. A. (2013). Calcium-induced amelioration of boron toxicity in radish. Journal of Plant Growth Regulation, 32(1), 61-71.
-          Tabatabaei, S. J. (2009). Principles of Plant Mineral Nutrition. Kharazmi. Tabriz. Iran. (In Farsi)
-          Tian, X. & Lei, Y. (2006). Nitric oxide treatment alleviates drought stress in wheat seedlings. Biologia Plantarum, 50(4), 775-778.‏
-          Wolf, B. (1971). The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions. Communications in Soil Science and Plant Analysis, 2(5), 363-374.‏
-          Xue, H., Aziz, R. M., Sun, N., Cassady, J. M., Kamendulis, L. M., Xu, Y. & Klaunig, J. E. (2001). Inhibition of cellular transformation by berry extracts. Carcinogenesis, 22(2), 351-356.
-          Yalpani, N., Enyedi, A. J., Leon, J. & Raskin, I. (1994). Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta, 193(3), 372-376.