کاربرد نانو ذرات نقره پوشش‌دار شده با پکتین و تریاکانتانول بر ضدعفونی و ریزغده‌زایی سیب‌زمینی رقم آگریا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه تبریز، ایران

2 دانشیار گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه تبریز، ایران

3 دانشیار گروه علوم و مهندسی باغبانی، دانشکده کشاورزی، دانشگاه مراغه، ایران

10.22034/iuvs.2020.129406.1103

چکیده

تولید گیاهان عاری از ویروس از طریق کشت درون شیشه‌ای و تکثیر آنها، به کاهش هزینه‌ها و افزایش عملکرد منجر می‌شود. بنابراین در این آزمایش اثر ضدعفونی‌کنندگی نانو ذرات نقره با پوشش پکتین در غلظت‌های (صفر، 25، 50، 75 و 150 میلی‌گرم در لیتر) در سه زمان (10، 20 و 30 دقیقه) بر کاهش آلودگی ریز نمونه‌ها به‌صورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در آزمایشگاه کشت بافت گیاهان باغی دانشگاه تبریز در سال 1398مورد بررسی قرار گرفت. در ادامه، به‌‌منظور بررسی اثر غلظت‌های مختلف تریاکانتانول (صفر، 25/0، 5/0 و 75/0 میلی‌گرم در لیتر) بر ریزغده‌زایی سیب‌زمینی رقم آگریا، آزمایش دوم در قالب طرح کاملاً تصادفی به اجرا در آمد. ضدعفونی نمونه‌ها با تیمار نانو ذرات نیترات نقره با پوشش پکتین در غلظت‌های 50 و 75 میلی‌گرم در لیتر در مدت‌ زمان 30 دقیقه بهترین نتیجه را برای کنترل پوسیدگی ریزنمونه داشتند. بر اساس نتایج به‌دست آمده، کاربرد تریاکانتانول اثر معنی‌داری بر صفات ریزغده فاقد خواب، طول شاخه فرعی و تعداد شاخه فرعی نداشت. با این ‌وجود، مقایسه میانگین صفات تعداد ریزغده و درصد غده‌زایی نشان داد که بیشترین میزان این شاخص‌ها در غلظت 5/0 میلی‌گرم در لیتر تریاکانتانول مشاهده گردید. علاوه بر این بیشترین میزان تعداد چشم و طول ریزغده در تیمار تریاکانتانول با غلظت 5/0 میلی‌گرم در لیتر به‌ترتیب با 98/1 عدد و 213/5 میلی‌متر مشاهده شد. با توجه به نتایج به‌دست‌آمده از این پژوهش، چنین به‌نظر می‌رسد که کاربرد نانو ذرات نقره پوشش‌دار شده با پکتین و نیز غلظت‌های مختلف تریاکانتانول به‌عنوان دو ترکیب مهم در کاهش پوسیدگی ریزنمونه‌ها و نیز افزایش ریزغده‌زایی سیب‌زمینی در شرایط درون شیشه‌ای قابل‌توصیه باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Pectin- tagged Nano Silver and Triacontanol on In Vitro Microruberization of Solanum tuberosum L. cv. Agria

نویسندگان [English]

  • Masoumeh Abedini 1
  • Alireza Motallebi Azar 2
  • Fariborz Zaare Nahandi 2
  • Gholamreza Gohari 3
1 M.Sc. Student, Department of Horticultural Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
2 Associate Professor, Department of Horticultural Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 Associate Professor, Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
چکیده [English]

Nanotechnology is effective in the rapid detection of plant diseases, identifying and removing pesticide residues, increasing the shelf life, packaging and transporting in crops. The aims of this study were to evaluate the effect of pectin- tagged nano silver nanocomposite and triacontanol on in vitro contamination, micropropagation and microtuberization of potato under in vitro condition. For this purpose, a factorial experiment was conducted in a completely randomized design with four replications on potato explants of mentioned cultivar. In first experiment, the number of healthy explant without any bacterial and fungal symptoms were calculated after 1 week. In second experiment, four weeks after cultivation of explants, micropropagarion in microtuber number, microtuber length and weight, diameter of the tubers, the length of bud, the percentage of non-dormancy microtubers, the germination percentage and the rate of microtuberization were measured. Our result showed that application of 50 mg/L for 30 min pectin-tagged nano silver increased healthy explants more than 50%. Among the different concentration of triacontanol, using 0.5 mg/L was the best response for traits such as microtuber number, microtuber length and weight. Also, using 0.5 mg/L triocontanol was the best protection for all microtuber traits except microtuber weight. Although the experiment was performed without the use of growth regulators, the addition of graphene oxide nanoparticles to the medium improved the micropropagation and microtuberization performance. In general, the results showed that 0.5 mg/L was the best concentration for microtuberization. Microtubers production technology is used as a tool to reduce the time needed to produce plant biomass, increase seed tuber quality (reduce pathogens), and microtubers production throughout the year.

کلیدواژه‌ها [English]

  • Contamination
  • Nanotechnology
  • Microtuberization
  • In vitro
-          Abelenda, J. A., Bergonzi, S., Oortwijn, M., Sonnewald, S., Du, M., Visser, R. G. & Bachem, C. W. (2019). Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Current Biology, 29(7), 1178-1186.
-          Abdi, G., Salehi, H. & Khosh-Khui, M. (2008). Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiologiae Plantarum, 30(5), 709-714.
-          Aksenova, N. P., Konstantinova, T. N., Golyanovskaya, S. A., Sergeeva, L. I. & Romanov, G. A. (2012). Hormonal regulation of tuber formation in potato plants. Russian Journal of Plant Physiology, 59(4), 451-466.
-          Aslam, A. & Iqbal, J. (2010). Combined effect of cytokinin and sucrose on in vitro tuberization parameters of two cultivars ie, diamant and red norland of potato (Solanum tuberosum). Pakistan Journal of Botany, 42(2), 1093-1102.
-          Aziz, R., Shahbaz, M. & Ashraf, M. (2013). Influence of foliar application of triacontanol on growth attributes, gas exchange and chlorophyll fluorescence in sunflower (Helianthus annuus L.) under saline stress. Pakistan Journal of Botany, 45(6), 1913-1918.‏
-          Cheng, L., Wang, D., Wang, Y., Xue, H. & Zhang, F. (2020). An integrative overview of physiological and proteomic changes of cytokinin‐induced potato (Solanum tuberosum L.) tuber development in vitro. Physiologia Plantarum, 168(3), 675-693.
-          Chhipa, H. (2019). Applications of nanotechnology in agriculture. In Methods in Microbiology, 46, 115-142.
-          Czajkowski, R., Perombelon, M. C., van Veen, J. A. & van der Wolf, J. M. (2011). Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology, 60(6), 999-1013.
-          Donnelly, D. J., Coleman, W. K. & Coleman, S. E. (2003). Potato microtuber production and performance: a review. American Journal of Potato Research, 80(2), 103-115.
-          Edwin, F. G., Hall, M. A. & De Klerk, G. J. (2008). Plant Propagation by Tissue - Culture. Spinger, Dordrecht, the Netherlands.
-          Eviatar-Ribak, T., Shalit-Kaneh, A., Chappell-Maor, L., Amsellem, Z., Eshed, Y. & Lifschitz, E. (2013). A cytokinin-activating enzyme promotes tuber formation in tomato. Current Biology, 23(12), 1057-1064.
-          Food and Agriculture Organization. (2018). International Year of the Potato 2018. In FAOSTAT, from http://www.fao.org/faostat.
-          Gopal, J., Chamail, A. & Sarkar, D. (2004). In vitro production of microtubers for conservation of potato germplasm: effect of genotype, abscisic acid, and sucrose. In Vitro Cellular & Developmental Biology-Plant, 40(5), 485-490.‏
-          Hannapel, D. J. (2007). Signaling the Induction ofTuber Formation. In: D. Vreugdenhil (Ed.), Potato Biology and Biotechnology. (pp. 242-243). Elsevier B.V.
-          Harjai, K., Bala, A., Gupta, R. K. & Sharma, R. (2013). Leaf extract of Azadirachta indica (neem): a potential antibiofilm agent for Pseudomonas aeruginosa. Pathogens and Disease, 69(1), 62-65.‏
-          Hirose, N., Takei, K., Kuroha, T., Kamada-Nobusada, T., Hayashi, H. & Sakakibara, H. (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany, 59(1), 75-83.
-          Hossain, M. S., Hossain, M. M., Hossain, T., Haque, M. M., Zakaria, M. & Sarkar, M. D. (2017). Varietal performance of potato on induction and development of microtuber in response to sucrose. Annals of Agricultural Sciences, 62(1), 75-81.‏
-          Ioannou, A., Gohari, G., Papaphilippou, P., Panahirad, S., Akbari, A., Dadpour, M. R. & Fotopoulos, V. (2020). Advanced nanomaterials in agriculture under a changing climate: The way to The future?. Environmental and Experimental Botany, 10, 40-48.
-          Islam, S. & Mohammad, F. (2020). Triacontanol as a dynamic growth regulator for plants under diverse environmental conditions. Physiology and Molecular Biology of Plants, 1, 1-13.
-          Islam, S., Zaid, A. & Mohammad, F. (2020). Role of triacontanol in counteracting the ill effects of salinity in plants: a review. Journal of Plant Growth Regulation, 1, 1-10.
-          Khalil, M. M., Ismail, E. H. & El-Magdoub, F. (2012). Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arabian Journal of Chemistry, 5(4), 431-437.
-          Khalil, M. M., Abd El Aal, A. M. H. & Samy, M. M. (2017). Studies on microtuberization of five potato genotypes. Egyptian Journal of Horticulture, 44(1), 91-97.
-          Khandaker, M. M., Faruq, G., Rahman, M. M., Sofian-Azirun, M. & Boyce, A. N. (2013). The influence of 1-triacontanol on the growth, flowering, and quality of potted Bougainvillea plants (Bougainvillea glabra var. Elizabeth Angus) under natural conditions. Science World Journal, 10, 341-355.
-          Kim, S. W., Kim, K. S., Lamsal, K., Kim, Y. J., Kim, S. B., Jung, M. & Lee, Y. S. (2009). An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiol Biotechnol, 19(8), 760-764.
-          Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prucek, R., Holecova, M. & Zboril, R. (2008). Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). Journal of Physical Chemistry, 112, 5825-5834.
-          Li, X., Zhong, Q., Li, Y., Li, G., Ding, Y., Wang, S. & Chen, L. (2016). Triacontanol reduces transplanting shock in machine-transplanted rice by improving the growth and antioxidant systems. Frontiers in Plant Science, 7, 872-888.
-          Lubick, N. (2008). Nanosilver toxicity: ions, nanoparticless or both? Environmental Science and Technology, 3, 42-59.
-          Min, J. S., Kim, K. S., Kim, S. W., Jung, J. H., Lamsal, K., Kim, S. B., ... & Lee, Y. S. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Journal of Plant Pathology,25(4), 376-380.
-          Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346-2353.
-          Naeem, M., Khan, M. M. A. & Siddiqui, M. H. (2009). Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Scientia Horticulturae, 121(4), 389-396.
-          Naeem, M. M. M. A., Khan, M. M. A., Idrees, M. & Aftab, T. (2011). Triacontanol-mediated regulation of growth and other physiological attributes active constituents and yield of Mentha arvensis L. Plant Growth Regulation, 65(1), 195-206.‏
-          Naqvi, B., Abbas, H. & Ali, H. (2019). Evaluation of in vitro tuber induction ability of two potato genotypes. Pakistan Journal of Agricultural Science, 56(1), 77-81.
-          Pang, Q., Chen, X., Lv, J., Li, T., Fang, J. & Jia, H. (2020). Triacontanol Promotes the Fruit Development and Retards Fruit Senescence in Strawberry: A Transcriptome Analysis. Plants, 9(4), 488-493.
-          Partila, A. M. (2019). Bioproduction of Silver Nanoparticles and Its Potential Applications in Agriculture. In: D. G. Panpatte & Y. K. Jhla (Eds.), Nanotechnology for Agriculture (pp. 19-36). Springer, Singapore.
-          Perveen, S., Shahbaz, M. & Ashraf, M. (2011). Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pakistan Journal of Botany,43(5), 2463-2468.
-          Rahman, M. Z., Islam, S. S., Chowdhury, A. N. & Subramaniam, S. (2015). Efficient microtuber production of potato in modified nutrient spray bioreactor system. Scientia Horticulturae, 192, 369-374.
-          Salem, J. & Hassanein, A. M. (2017). In vitro propagation, microtuberization, and molecular characterization of three potato cultivars. Biologia Plantarum, 61(3), 427-437.
-          Sarkar, D., Pandey, S. K. & Sharma, S. (2006). Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum) tuber formation in vitro. Plant Cell, Tissue and Organ Culture, 87(3), 285-293.
-          Savithramma, N., Rao, M. L., Rukmini, K., & Devi, P. S. (2011). Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. International Journal of Chemistry Technology Research, 3(3), 1394-1402.‏
-          Seabrook, J. E. (2005). Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro: a review. American Journal of Potato Research, 82(5), 353-367.‏
-          Singh, M., Khan, M. M. A., Moinuddin, & Naeem, M. (2012). Augmentation of nutraceuticals, productivity and quality of ginger (Zingiber officinale Rosc.) through triacontanol application. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 146(1), 106-113.
-          Tan, W., Peralta-Videa, J. R. & Gardea-Torresdey, J. L. (2018). Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs–a critical review. Environmental Science: Nano, 5(2), 257-278.
-          Torrent, L., Margui, E., Queralt, I., Hidalgo, M. & Iglesias, M. (2019). Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies. Journal of Environmental Sciences, 83, 205-216.
-          Verma, A., Malik, C. P., Gupta, V. K. & Sinsinwar, Y. K. (2009). Response of groundnut varieties to plant growth regulator (BAP) to induce direct organogenesis. World Journal of Agricultural Sciences, 5(3), 313-317.‏
-          Venkatasalam, E. P., Pandey, K. K., Singh, B. P., Thakur, V., Sharma, S., Sood, R. & k Sharma, A. (2013). Efficacy of antimicrobial agents on in vitro micropropagation potential of potato. Potato Journal,40, 25-36.
-          Warheit, D. B., Borm, P. J., Hennes, C. & Lademann, J. (2007). Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhalation Toxicology, 19(8), 631-643.
-          Wrobel, S. (2015). Assessment of potato microtuber and in vitro plantlet seed multiplication in field conditions–Growth, development and yield. Field Crops Research, 178, 26-33.‏