- Abelenda, J. A., Bergonzi, S., Oortwijn, M., Sonnewald, S., Du, M., Visser, R. G. & Bachem, C. W. (2019). Source-sink regulation is mediated by interaction of an FT homolog with a SWEET protein in potato. Current Biology, 29(7), 1178-1186.
- Abdi, G., Salehi, H. & Khosh-Khui, M. (2008). Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiologiae Plantarum, 30(5), 709-714.
- Aksenova, N. P., Konstantinova, T. N., Golyanovskaya, S. A., Sergeeva, L. I. & Romanov, G. A. (2012). Hormonal regulation of tuber formation in potato plants. Russian Journal of Plant Physiology, 59(4), 451-466.
- Aslam, A. & Iqbal, J. (2010). Combined effect of cytokinin and sucrose on in vitro tuberization parameters of two cultivars ie, diamant and red norland of potato (Solanum tuberosum). Pakistan Journal of Botany, 42(2), 1093-1102.
- Aziz, R., Shahbaz, M. & Ashraf, M. (2013). Influence of foliar application of triacontanol on growth attributes, gas exchange and chlorophyll fluorescence in sunflower (Helianthus annuus L.) under saline stress. Pakistan Journal of Botany, 45(6), 1913-1918.
- Cheng, L., Wang, D., Wang, Y., Xue, H. & Zhang, F. (2020). An integrative overview of physiological and proteomic changes of cytokinin‐induced potato (Solanum tuberosum L.) tuber development in vitro. Physiologia Plantarum, 168(3), 675-693.
- Chhipa, H. (2019). Applications of nanotechnology in agriculture. In Methods in Microbiology, 46, 115-142.
- Czajkowski, R., Perombelon, M. C., van Veen, J. A. & van der Wolf, J. M. (2011). Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathology, 60(6), 999-1013.
- Donnelly, D. J., Coleman, W. K. & Coleman, S. E. (2003). Potato microtuber production and performance: a review. American Journal of Potato Research, 80(2), 103-115.
- Edwin, F. G., Hall, M. A. & De Klerk, G. J. (2008). Plant Propagation by Tissue - Culture. Spinger, Dordrecht, the Netherlands.
- Eviatar-Ribak, T., Shalit-Kaneh, A., Chappell-Maor, L., Amsellem, Z., Eshed, Y. & Lifschitz, E. (2013). A cytokinin-activating enzyme promotes tuber formation in tomato. Current Biology, 23(12), 1057-1064.
- Food and Agriculture Organization. (2018). International Year of the Potato 2018. In FAOSTAT, from http://www.fao.org/faostat.
- Gopal, J., Chamail, A. & Sarkar, D. (2004). In vitro production of microtubers for conservation of potato germplasm: effect of genotype, abscisic acid, and sucrose. In Vitro Cellular & Developmental Biology-Plant, 40(5), 485-490.
- Hannapel, D. J. (2007). Signaling the Induction ofTuber Formation. In: D. Vreugdenhil (Ed.), Potato Biology and Biotechnology. (pp. 242-243). Elsevier B.V.
- Harjai, K., Bala, A., Gupta, R. K. & Sharma, R. (2013). Leaf extract of Azadirachta indica (neem): a potential antibiofilm agent for Pseudomonas aeruginosa. Pathogens and Disease, 69(1), 62-65.
- Hirose, N., Takei, K., Kuroha, T., Kamada-Nobusada, T., Hayashi, H. & Sakakibara, H. (2008). Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany, 59(1), 75-83.
- Hossain, M. S., Hossain, M. M., Hossain, T., Haque, M. M., Zakaria, M. & Sarkar, M. D. (2017). Varietal performance of potato on induction and development of microtuber in response to sucrose. Annals of Agricultural Sciences, 62(1), 75-81.
- Ioannou, A., Gohari, G., Papaphilippou, P., Panahirad, S., Akbari, A., Dadpour, M. R. & Fotopoulos, V. (2020). Advanced nanomaterials in agriculture under a changing climate: The way to The future?. Environmental and Experimental Botany, 10, 40-48.
- Islam, S. & Mohammad, F. (2020). Triacontanol as a dynamic growth regulator for plants under diverse environmental conditions. Physiology and Molecular Biology of Plants, 1, 1-13.
- Islam, S., Zaid, A. & Mohammad, F. (2020). Role of triacontanol in counteracting the ill effects of salinity in plants: a review. Journal of Plant Growth Regulation, 1, 1-10.
- Khalil, M. M., Ismail, E. H. & El-Magdoub, F. (2012). Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arabian Journal of Chemistry, 5(4), 431-437.
- Khalil, M. M., Abd El Aal, A. M. H. & Samy, M. M. (2017). Studies on microtuberization of five potato genotypes. Egyptian Journal of Horticulture, 44(1), 91-97.
- Khandaker, M. M., Faruq, G., Rahman, M. M., Sofian-Azirun, M. & Boyce, A. N. (2013). The influence of 1-triacontanol on the growth, flowering, and quality of potted Bougainvillea plants (Bougainvillea glabra var. Elizabeth Angus) under natural conditions. Science World Journal, 10, 341-355.
- Kim, S. W., Kim, K. S., Lamsal, K., Kim, Y. J., Kim, S. B., Jung, M. & Lee, Y. S. (2009). An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiol Biotechnol, 19(8), 760-764.
- Kvitek, L., Panacek, A., Soukupova, J., Kolar, M., Vecerova, R., Prucek, R., Holecova, M. & Zboril, R. (2008). Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). Journal of Physical Chemistry, 112, 5825-5834.
- Li, X., Zhong, Q., Li, Y., Li, G., Ding, Y., Wang, S. & Chen, L. (2016). Triacontanol reduces transplanting shock in machine-transplanted rice by improving the growth and antioxidant systems. Frontiers in Plant Science, 7, 872-888.
- Lubick, N. (2008). Nanosilver toxicity: ions, nanoparticless or both? Environmental Science and Technology, 3, 42-59.
- Min, J. S., Kim, K. S., Kim, S. W., Jung, J. H., Lamsal, K., Kim, S. B., ... & Lee, Y. S. (2009). Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Journal of Plant Pathology,25(4), 376-380.
- Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T. & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346-2353.
- Naeem, M., Khan, M. M. A. & Siddiqui, M. H. (2009). Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Scientia Horticulturae, 121(4), 389-396.
- Naeem, M. M. M. A., Khan, M. M. A., Idrees, M. & Aftab, T. (2011). Triacontanol-mediated regulation of growth and other physiological attributes active constituents and yield of Mentha arvensis L. Plant Growth Regulation, 65(1), 195-206.
- Naqvi, B., Abbas, H. & Ali, H. (2019). Evaluation of in vitro tuber induction ability of two potato genotypes. Pakistan Journal of Agricultural Science, 56(1), 77-81.
- Pang, Q., Chen, X., Lv, J., Li, T., Fang, J. & Jia, H. (2020). Triacontanol Promotes the Fruit Development and Retards Fruit Senescence in Strawberry: A Transcriptome Analysis. Plants, 9(4), 488-493.
- Partila, A. M. (2019). Bioproduction of Silver Nanoparticles and Its Potential Applications in Agriculture. In: D. G. Panpatte & Y. K. Jhla (Eds.), Nanotechnology for Agriculture (pp. 19-36). Springer, Singapore.
- Perveen, S., Shahbaz, M. & Ashraf, M. (2011). Modulation in activities of antioxidant enzymes in salt stressed and non-stressed wheat (Triticum aestivum L.) plants raised from seed treated with triacontanol. Pakistan Journal of Botany,43(5), 2463-2468.
- Rahman, M. Z., Islam, S. S., Chowdhury, A. N. & Subramaniam, S. (2015). Efficient microtuber production of potato in modified nutrient spray bioreactor system. Scientia Horticulturae, 192, 369-374.
- Salem, J. & Hassanein, A. M. (2017). In vitro propagation, microtuberization, and molecular characterization of three potato cultivars. Biologia Plantarum, 61(3), 427-437.
- Sarkar, D., Pandey, S. K. & Sharma, S. (2006). Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum) tuber formation in vitro. Plant Cell, Tissue and Organ Culture, 87(3), 285-293.
- Savithramma, N., Rao, M. L., Rukmini, K., & Devi, P. S. (2011). Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. International Journal of Chemistry Technology Research, 3(3), 1394-1402.
- Seabrook, J. E. (2005). Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro: a review. American Journal of Potato Research, 82(5), 353-367.
- Singh, M., Khan, M. M. A., Moinuddin, & Naeem, M. (2012). Augmentation of nutraceuticals, productivity and quality of ginger (Zingiber officinale Rosc.) through triacontanol application. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 146(1), 106-113.
- Tan, W., Peralta-Videa, J. R. & Gardea-Torresdey, J. L. (2018). Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs–a critical review. Environmental Science: Nano, 5(2), 257-278.
- Torrent, L., Margui, E., Queralt, I., Hidalgo, M. & Iglesias, M. (2019). Interaction of silver nanoparticles with mediterranean agricultural soils: Lab-controlled adsorption and desorption studies. Journal of Environmental Sciences, 83, 205-216.
- Verma, A., Malik, C. P., Gupta, V. K. & Sinsinwar, Y. K. (2009). Response of groundnut varieties to plant growth regulator (BAP) to induce direct organogenesis. World Journal of Agricultural Sciences, 5(3), 313-317.
- Venkatasalam, E. P., Pandey, K. K., Singh, B. P., Thakur, V., Sharma, S., Sood, R. & k Sharma, A. (2013). Efficacy of antimicrobial agents on in vitro micropropagation potential of potato. Potato Journal,40, 25-36.
- Warheit, D. B., Borm, P. J., Hennes, C. & Lademann, J. (2007). Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhalation Toxicology, 19(8), 631-643.
- Wrobel, S. (2015). Assessment of potato microtuber and in vitro plantlet seed multiplication in field conditions–Growth, development and yield. Field Crops Research, 178, 26-33.